
Supplementary Material: An Inverse Procedural
Modeling Pipeline for Stylized Brush Stroke Rendering

Hao Li∗ , Zhongyue Guan∗ , Zeyu Wang

The Hong Kong University of Science and Technology (Guangzhou), China

1. Brush Parameters

Figure 1: All stamp images used for brush generation.

We generated 6,677 sets of brush parameters ϕ = (stamp im-
age, interval, thickness, rotation randomness, noise factor). For the
stamp image, we collected 107 public ones from an online plat-
form [PNG23] as Figure 1 shows.

2. Stroke-based Patch Segmentation

Initially, we used the Canny algorithm [Can86] for recognizing
edges in sketch drawings, and then applied dilation and Gaussian
blur to smooth the brush edges. However, it is less effective for
denser sketches. As the turtle example in Figure 2 shows, the afore-
mentioned edge-based approach recognized the main body as a
whole patch, while our approach is capable of identifying individ-
ual patch for a single brush.

*Equal contribution.

Figure 2: Comparison of segmentation results. The edge-based ap-
proach cannot identify individual brush in strokes that connect to-
gether (left), while our approach can separate individual brush as
a single patch (right).

3. Brush Prediction

3.1. Model

We modified ResNet-18 [HZRS15] architecture by changing the
fully connected layer to have 111 outputs. Table 1 shows the de-
tailed network architecture.

3.2. Loss

We formulated the prediction of stamp images as a classification
problem and the prediction of other parameters as linear regression
problems. Firstly, we evaluate the predicted stamp image category
ŝ, as compared to the target category s, using cross-entropy loss:

Ls =−
n

∑
j=1

s jlogŝ j

where n is 107, the number of stamp images we included. We use
L2 loss for interval, comparing a predicted interval value î from the
corresponding target i:

Li = ||i− î||2

The L2 losses for thickness, rotation randomness, and noise factor
are similarly calculated.

https://orcid.org/0000-0001-7756-0901
https://orcid.org/0009-0006-8250-6823
https://orcid.org/0000-0001-5374-6330


Operator H,W IC,OC K,S,P
Conv2d 224, 224 3,64 7, 2, 3

MaxPool2d 112, 112 64,64 3, 2, 1
Conv2d 56, 56 64,64 3, 1, 1
Conv2d 56, 56 64,64 3, 1, 1
Conv2d 56, 56 64,64 3, 1, 1
Conv2d 56, 56 64,64 3, 1, 1
Conv2d 56, 56 64,128 3, 2, 1
Conv2d 28, 28 128,128 3, 1, 1
Conv2d 28, 28 128,128 3, 1, 1
Conv2d 28, 28 128,128 3, 1, 1
Conv2d 28, 28 128,256 3, 2, 1
Conv2d 14, 14 256,256 3, 1, 1
Conv2d 14, 14 256,256 3, 1, 1
Conv2d 14, 14 256,256 3, 1, 1
Conv2d 14, 14 256,512 1, 2, 1
Conv2d 7, 7 512,512 3, 1, 1
Conv2d 7, 7 512,512 3, 1, 1
Conv2d 7, 7 512,512 3, 1, 1
Conv2d 7, 7 512,512 3, 1, 1

AdaptiveAvgPool2d 1, 1 512, 512
Linear 111

Table 1: Network Architecture. H/W denotes height and width, IC input
channels, OC output channels, K kernel size, S stride size, and P padding
size.

References
[Can86] CANNY J.: A Computational Approach to Edge Detection. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 6 (1986),
679–698. 1

[HZRS15] HE K., ZHANG X., REN S., SUN J.: Deep Residual Learning
for Image Recognition. arXiv preprint arXiv:1512.03385 (2015). 1

[PNG23] PNGEGG: Free Transparent PNG Images. https://www.
pngegg.com/, 2023. Accessed on: December 30, 2023. 1

https://www.pngegg.com/
https://www.pngegg.com/

