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Figure 1. Results of MagicColor. Given a set of colored references, MagicColor can colorize a line art image while maintaining color
consistency across multiple instances. Compared to traditional methods, our approach significantly improves coloring efficiency.

Abstract

We present MagicColor, a diffusion-based framework for
multi-instance sketch colorization. The production of multi-
instance 2D line art colorization adheres to an industry-
standard workflow, which consists of three crucial stages:
the design of line art characters, the coloring of individ-
ual objects, and the refinement process. The artists are
required to repeat the process of coloring each instance
one by one, which is inaccurate and inefficient. Mean-
while, current generative methods fail to solve this task due
to the challenge of multi-instance pair data collection. To
tackle these challenges, we incorporate three technical de-
signs to ensure precise character detail transcription and
achieve multi-instance sketch colorization in a single for-
ward pass. Specifically, we first propose the self-play train-
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ing strategy to address the lack of training data. Then we
introduce an instance guider to feed the color of the in-
stance. To achieve accurate color matching, we present
fine-grained color matching with edge loss to enhance vi-
sual quality. Equipped with the proposed modules, Mag-
icColor enables automatically transforming sketches into
vividly-colored images with accurate consistency and multi-
instance control. Experiments on our collected datasets
show that our model outperforms existing methods regard-
ing chromatic precision. Specifically, our model critically
automates the colorization process with zero manual adjust-
ments, so novice users can produce stylistically consistent
artwork by providing reference instances and the original
line art. Our code and additional details are available at
https://yinhan-zhang.github.io/color.


https://yinhan-zhang.github.io/color
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Figure 2. Illustration of the workflow of multi-instance sketch
colorization production. Previous methods can only achieve
multi-instance sketch colorization step by step, which is time-
consuming and inaccurate. In contrast, our method can color
a sketch while maintaining consistency, making multi-instance
sketch colorization easier.

Ours

1. Introduction

The fast development of the digital cartoon industry has
demonstrated widespread potential applications for gener-
ative artificial intelligence. Colorizing cartoon sketches, a
crucial aspect within the broader realm of the cartoon in-
dustry, serves as an indispensable task. It not only height-
ens the visual allure but also enriches the narrative expe-
rience by effectively and vividly communicating emotions
and actions. Using the automatic pipeline can streamline
production workflows, accelerate content creation, reduce
labor demands, and meet the growing demand for cartoons.

In the traditional process of cartoon sketch colorization,
artists first analyze the line art to grasp the character and
story context. They then choose suitable color palettes and
manually apply colors layer by layer with attention to de-
tail. However, traditional methods have two drawbacks.
The first one is that they are time-consuming, as manual col-
oring requires great effort to match the original design. For
instance, in an animation series, multiple identical objects
in the same image need to be colored one by one, which is
very inefficient. The other problem is inaccuracy since man-
ual work is error-prone and different artists may have varied
color interpretations, causing inconsistent results in large-
scale projects. Our method slots into this workflow, sup-
porting auto-colorization while preserving design fidelity
and instance-level color consistency.

Cartoon sketch colorization has garnered considerable
research interest due to its potential in digital art and ani-
mation production. Currently, user-guided methods [3, 5, 7,
23,27, 58, 64, 95, 99] rely on explicit human inputs such
as color points, scribbles, or textual descriptions to direct
the coloring process. Reference-based approaches [1, 11,
20, 94, 101] employ fused attention mechanisms to trans-
fer colors from exemplar images while preserving struc-
tural coherence. While recent advances [52, 57] have
improved automated colorization, three critical limitations
persist: (1) Domain adaptation gap: existing coloriza-
tion pipelines rely heavily on reference image fidelity, as

pronounced structural mismatches between line art and ex-
emplars frequently induce erroneous chromatic mappings.
This dependency imposes an impractical requirement for
near-isomorphic geometry between inputs, which rarely
holds in unconstrained animation workflows where stylized
sketches often diverge significantly from real-world refer-
ences. (2) Instance-level control granularity: existing
methods demonstrate a lack of fine-grained control over
instance-specific attributes during the color transfer process.
Discrepancies in character pose, proportion, or viewpoint
between reference instances and target sketches often lead
to distorted textures and the loss of important details. As
a result, crucial features from the reference image may be
significantly diminished during the colorization process. (3)
Color consistency: achieving instance-aware color consis-
tency is essential. The coloring of regions with non-closed
lines or multiple objects often results in color bleeding,
which compromises the accuracy and stability of instance
control. This instability undermines the overall harmony of
the image, which detracts from the viewer’s experience.

To overcome these challenges, we propose MagicColor,
a novel framework that streamlines the colorization pro-
cess. Our approach builds upon pre-trained diffusion model
priors, capitalizing on their learned capacity to enforce vi-
sual consistency across generated outputs. The architectural
cornerstones of our approach are articulated as follows.
First, to tackle the misalignment between the reference in-
stances and target line art, we incorporate an explicit refer-
ence mechanism that seamlessly infuses reference-derived
color semantics and artistic styles into line art. In addition,
we employ implicit latent control to ensure precise refer-
ence to each instance, significantly enhancing color accu-
racy and consistency. Second, to further improve the visual
quality and color consistency of the output, we introduce
edge loss and color matching. These methods compel the
model to genuinely extract color information from the ref-
erence character design, thereby improving the accuracy of
semantic correspondence and reducing the reliance on any
color information that may inadvertently leak from the ref-
erence image. Third, our model adopts a two-stage, self-
play training strategy, which addresses the challenges of
limited multi-instance training data and subsequently incor-
porates additional reference images to refine the coloriza-
tion capability. By facilitating colorization across multiple
instances, our model achieves impressive color consistency
with minimal human intervention. Our approach achieves
state-of-the-art results across both quantitative metrics and
qualitative evaluations, outperforming prior art in animated
content creation. We aim for a critical step toward fully au-
tomated, high-efficiency animation pipelines with guaran-
teed stylistic coherence. This method can also be extended
beyond anime to the broader digital art and media fields.
Our contributions can be summarized as follows:



* We propose MagicColor, the first multi-instance color-
ing method to support multiple instances integration for
sketch colorization in a single forward pass.

* Technically, to solve the lack of multi-instance data, we
design a two-stage, self-play training strategy. We also
propose an instance guider and pixel-level color matching
with edge loss to enhance the color correspondence.

2. Related Work

2.1. Line Art Colorization

Line art colorization techniques strive to decode the link
between semantics and color by leveraging large-scale
datasets [8, 47-51, 63, 91-93, 97]. Researchers utilize a
series of semantic modules such as classification [22], se-
mantic segmentation [17, 102], and instance-aware infor-
mation [62, 69] to enrich color vibrancy. These methods
generally perform well when the object’s color has a strong
semantic-based determinacy. However, when confronted
with objects that exhibit a broad range of colors, they often
produce lackluster results. In contrast, our proposed frame-
work, equipped with an innovative imagination module, is
engineered to transcend this constraint.

On the other hand, generative priors enshrined within
pretrained Generative Adversarial Networks (GANSs) [16,
72, 81] and Diffusion models have been cornerstones in pur-
suing photorealistic colorization. GANS are adept at both
conditional and unconditional image synthesis. Specific
conditioning factors, such as layout and semantic maps, are
harnessed to fine-tune the image synthesis process [70, 71].
For example, the StyleGAN-family models have demon-
strated remarkable prowess in generating high-resolution
images without explicit conditioning [25, 26, 82]. Some
models struggle to maintain the local spatial integrity of
grayscale inputs but can use diverse color priors from pre-
trained models [13, 21, 62]. In our sketch colorization task,
we aim to adapt these generative prior-based techniques.
Our method can preserve sketch structures and semantics
while using their color-generation abilities.

2.2. Visual Correspondence

In computer vision, visual correspondence aims to identify
and match relevant features or points among different im-
ages. It is widely applied in tasks such as stereo vision and
motion tracking. In the past, traditional methods [2, 45] re-
lied on hand-designed features to establish corresponding
relationships. Nowadays, deep learning methods [9, 12, 28,
31] obtain matching capabilities through supervised learn-
ing with labeled datasets. However, supervised learning
faces significant scalability issues. Precise pixel-level an-
notations are not only time-consuming and labor-intensive
but also costly. To address this, scholars have started to
explore weakly-supervised or self-supervised visual corre-

spondence models. For example, LightGlue [38] can match
sparse local features across image pairs through an adaptive
mechanism. CoTracker [24] adopts a semi-supervised train-
ing method by generating pseudo-labels using off-the-shelf
models. DIFT [73] extracts features by diffusion models
and can achieve pixel-level semantic point matching. Build-
ing upon the diffusion models’ prior correspondence knowl-
edge, our framework enables reference-based colorization
via semantic-aligned color mapping between line art and
reference instances, without any structural modifications.

2.3. Reference-Based Image Colorization

A great deal of research has been committed to colorizing
photographs using reference-based priors [4, 15, 18, 74, 90].
Initially, efforts focused on the transfer of chromatic infor-
mation to the corresponding regions through luminance and
texture alignment, with various low-level feature-based cor-
respondence techniques developed for more precise local
color transfer [7, 32, 40, 52, 79]. However, these meth-
ods are vulnerable to complex appearance variations of the
same object, as low-level features cannot capture semantic
nuances [17, 98]. Line art colorization is notably different
from natural image colorization [65, 83, 88, 95].

The Diffusion models have emerged as a powerful alter-
native. The Denoising Diffusion Probabilistic Model [46]
and the Denoising Diffusion Implicit Model [67] paved the
way for Latent Diffusion Models (LDMs) like Stable Diffu-
sion [60], revolutionizing text-to-image generation. Build-
ing on LDMs, ControlNet [96] uses task-specific condi-
tions and multi-modal inputs [41, 57, 85] to control pre-
trained diffusion models [14, 37, 76, 84, 86, 87, 103, 104].
Reference-based colorization [42, 43, 53, 55, 75, 80],
guided by a user-provided reference image, has also be-
come popular, with existing methods using strategies such
as segmented graphs, active learning, and attention net-
works. AnimeDiffusion [6] and ColorizeDiffusion [89] in-
troduce a diffusion-based reference-based framework for
anime face colorization. Paint-by-Example [90] and Ob-
jectStitch [68] leverage CLIP as their cross-modal en-
coder to extract instance-level visual-semantic embeddings,
whereas AnyDoor [10] innovates by training on video se-
quences and adopting DINOv2 [54] for spatial-temporal
feature learning. Despite these advancements, all frame-
works focus on generic object categories, falling short of
fine-grained part-level alignment required for intricate de-
sign tasks [77, 78].

3. Preliminaries

3.1. Latent Diffusion Model

As the core architecture of Stable Diffusion [60], Latent
Diffusion Models (LDM) revolutionize text-to-image gen-
eration by executing diffusion-denoising processes in a



compressed latent space rather than the raw pixel domain,
enabling stable and efficient training. The pipeline begins
with a Variational Autoencoder (VAE) projecting RGB im-
ages into low-dimensional latent codes, where semantic-
guided diffusion sampling occurs under textual condi-
tioning. Then, a UNet-based network incorporates self-
attention and cross-attention mechanisms through UNet
blocks to learn the reverse denoising process in the la-
tent space. Cross-attention establishes bidirectional interac-
tions between text embeddings and visual features, ensur-
ing prompt semantics are continuously infused. The whole
training objective of the UNet can be written as:

Lripv =E¢ 5 {HE — €9 (\/0th + V1 — e, t) H2:| ,
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where z notes the latent embedding of the training sample.
€p and e represent predicted noise by the diffusion model
and ground truth noise at corresponding timestep ¢, respec-
tively. c is the condition embedding involved in the gen-
eration, and the coefficient «o; remains consistent with that
employed in vanilla diffusion models.

3.2. Reference Condition Injection

In the current scenario, reference instances frequently suffer
from noise, redundancy, and semantic conflicts, which sig-
nificantly impede the model’s ability to learn colors effec-
tively. To address this issue, when presented with [NV user-
provided reference instances along with the line art input,
our model employs a dual-branch condition injection strat-
egy. This strategy aims to achieve semantic similarity and
structural alignment with the input. First, we align multi-
ple instances in a layer and input them into the reference
net. Then, we encode with CLIP and apply reference at-
tention mechanisms [4, 18, 44] to inject color and semantic
info into the UNet. Also, the line art is injected into the
UNet to enhance line-structure features. This lets the model
learn global reference info evenly and avoid interference.
Second, for instance-aware image generation, we utilize in-
stance images I; embedding as latent control signals. Un-
like other methods [44, 62], our paradigm supports the use
of multiple instances, which enhances the model’s general-
izability. Zero-shot customization is tough, so we use pre-
trained vision models to extract the target object identity.
Previous studies used CLIP for target embedding [34, 59].
We use DINOV?2 as the feature encoder [54] to get discrim-
inative spatial identity. DINOv2, trained with patch-level
objectives under random masking, has highly expressive
features. Its output includes a 26 x 26 x 1024 spatial em-
bedding s; for patch-level features and a 1024 dimensional
global embedding g;.

4. Method

Problem Definition. We first formulate the task of multi-
instance sketch colorization with per-instance chromatic
control, enabling precise mapping from multiple reference
objects to corresponding line drawing instances via seman-
tic correspondence. We can represent the problem in a more
concise way using the following formula:

Iout:(SvRaM)7 (2)

where I,,; is the output image to be generated. The condi-
tion C' is composed of a line art image 5, a set of reference
instances R = {[[1,---,L;] | ¢ = 1,---,N}, and a set
of instance masks M = {[My,--- ,M;] |i=1,--- ,N}.
Each I; in R corresponds to an instance, and each M; in M
is a binary mask indicating the reference spatial location of
an instance.

Architecture Design. Owing to the high-fidelity detail de-
mands in anime sketch colorization, the core challenge re-
sides in designing encoders capable of spatially precise ref-
erence image parsing to extract sub-pixel-level visual cues.
Inspired by recent studies [19, 35, 44] which demonstrated
the effectiveness of leveraging an additional UNet archi-
tecture for this purpose, we introduce a reference net fol-
lowing a similar design. Additionally, the sketch and in-
stance guider are designed based on ControlNet [96], which
provides an efficient condition for injecting line art and
instance-level information into the generative process. Fur-
thermore, we employ DINOv2 [54] to encode images and
train a Feed-Forward Network layer to extract features from
the image embeddings. These extracted features are then in-
tegrated into the latent control signals.

4.1. Self-Play Training Strategy

We then introduce a two-stage, self-play training approach
to solve the problem of a lack of multi-instance training data
and gradually boost the model’s performance to build an
advanced model that can give high-quality coloring results.
Single-Reference Colorization Training. In the first stage,
training starts by activating the reference net, UNet, and
the sketch guider. In both stages, we use color matching
with edge loss for training. For each anime sequence, we
perform random frame sampling without replacement: one
frame is designated as the style reference exemplar, while
the other serves as the raw input sketch for colorization. We
use the whole reference image as a conditional input and
extract the line art from the original image. Given a refer-
ence and line art image pair, the model maps color seman-
tics from the reference image to the line art by minimizing
a carefully designed edge loss function, aiming to make the
model learn basic color-semantic relationships, forming the
basis for later multi-instance refinement.

Multi-Instance Refinement. In the second stage, we train
the reference net, UNet, sketch guider, and instance guider
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Figure 3. Overview of the MagicColor pipeline. We combine a dual-UNet framework with an instance control module (ICM). During
training, we use multiple instances to set the overall color accurately. The color matching enables the model to better align the colors of
the target image with those of the reference instances precisely. The edge loss helps the model pay more attention to the high-frequency
areas and edges, resulting in a more accurate and vivid colorization for each instance.

to improve the model’s ability to handle multiple instances
and make local coloring more accurate. To precisely control
each instance in the references, we use the Segment Any-
thing Model (SAM) [29, 39, 100] to extract instances sep-
arately and perform operations like random fusion, scaling,
shuffling, and adding noise to instances in a layer as refer-
ence net input to enhance the model’s per-instance seman-
tic perception for accurate colorization. Then, the model
encodes all instances, aligning them in latent space, and
starts coloring each instance from the sketch, considering
their features and overall relationships. This process results
in more accurate colorization, especially in areas with high
color and semantic requirements.

4.2. Instance Control Module

Previous methods often resorted to directly imposing con-
straints within the reference attention mechanism for con-
trol purposes [4, 18, 19]. Nevertheless, when faced with
the task of handling multiple instances as conditional input,
this conventional approach proved to be extremely arduous.
To uphold semantic correspondence and safeguard details,
we align image embeddings in the latent space, thereby em-
powering more precise and effective handling of the intri-
cate input scenarios presented by multiple instances. Given
target regions (instance masks), we align the bounding rect-

angle of the mask with the input DINO feature maps using
box coordinates. Subsequently, we use the dense grids of
the mask within this rectangle to interpolate features from
the input DINO features. This process is similar to ROI
alignment, but the resolution of the ROI is flexible and fol-
lows the size of the mask. Finally, to further incorporate
global information, we randomly drop 10% of the spatial
embedding s; and replace it with the DINO global embed-
ding g;. As our target mask may have a different silhouette
from the shape of the input image, injecting global embed-
ding enhances the model’s generalizability and adaptability
across diverse image conditions. The final ROI feature is
then warped into the original region of the latent control
signal:

n
l. = Z Drop_out(Interpolate(s;, M;, B;), g:), (3)
i=1
where B; is the bounding box of the target mask M;. To
establish an instance-aware colorization framework, we use
a latent control signal, denoted as [, which is a latent fea-
ture with a size of [, € REXH' W' Ag shown in Fig-
ure 4, our model with an instance control module achieves
precise instance-level control to produce varied colorization
outcomes. Although the training data is derived from anime
datasets, the references can incorporate real-life images,



highlighting the model’s adaptability across different do-
mains and flexible utilization of diverse reference sources.

4.3. Structure-Content Supervision Enhancement

We present a comprehensive approach to enhance the per-
formance of diffusion models in line art colorization. By in-
troducing edge loss and color matching, we address crucial
aspects of image quality, resulting in more visually appeal-
ing and perceptually accurate generated images.

Edge Loss. During the diffusion model’s training process,
each pixel in an image contributes equally to the supervision
process. The diffusion model’s original training objective is
pixel-level mean squared error (MSE) loss. However, si-
multaneously, we aim to make the image content more con-
sistent with human perception of image quality. To enhance
the supervision over the high-frequency area and improve
the generation quality, we propose the edge loss, which con-
sists of the perceptual loss and the re-weighted edge loss.
The formula for the perceptual loss is as follows:

1 .
Eperceptual = ﬁ Z |¢)1(2) - ¢1(Z)|§ 5 (4)
i=1

where Z is the prediction latent embedding obtained by de-
coding €y, N represents the number of feature layers used
for calculation, and ¢; is the feature-extraction function cor-
responding to the i-th layer of the pre-trained neural net-
work. A is a hyper-parameter that balances £ pys and the
perceptual 1oss Lperceptuat- Moreover, in scenes charac-
terized by complex hierarchical structures and overlapping
objects, the importance of object edges may differ signifi-
cantly from that of the plain background pixels. We calcu-
late the overall instances edge map, which effectively miti-
gates interference from the background as we focus solely
on the edges of individual objects. Then, we apply structure
foreground enhancement from SyntheOcc [33] to the edge
pixels. Since we perform edge detection in the latent space
with the size of the input images, we regard the edge map
as a loss weight map w to enhance structure supervision.
Finally, our total loss can be written as:

ﬁ =w- ['LDM + A ﬁperceptual (5)

Color Matching. We employ pre-trained diffusion mod-
els to identify corresponding points within real-world im-
ages. Our model, which has a UNet at its core, processes
noisy images by cleaning them and extracting features cru-
cial for establishing correspondences. Two steps utilize a
diffusion feature map to match pixels between two images.
(1) Semantic Matching. This is accomplished by deter-
mining the nearest neighbors and computing the similarity
using cosine distance. To obtain pixel correspondences, we
begin by extracting dense features from both images and
matching them. Let F; be the feature map of an image .

References Result

Line Art References Result

Figure 4. Instance Control Ability. With the same line art and
diverse reference instances, our method achieves precise instance-
level control for varied colorization and all without needing extra
guidance.

For a pixel at position p, we obtain the feature vector F'(p)
through bilinear interpolation. In terms of color matching,
C'reference denotes the color feature of the reference image,
and Cl,yrce denotes the color feature of the source image.
We obtain Csource and Creference by sampling features
from the normalized source and target features. To quan-
tify their similarity, we calculate the Euclidean distance (D)
between Chrcference and the flattened Cioyree. Given two
feature vectors v1 = Chreference and V2 = Csoyree, the Eu-
clidean distance is computed as follows:

(6)

where f represents the feature dimension. Subsequently,
we find the nearest-neighbor indices. (2) Feature injection.
Given a pixel p; in v, we find the corresponding pixel ps
in vy as follows:

p2 = argmin d (Fy (p1), F2(p)), @)
p

where d is the cosine distance. This approach transfers
color-related information between the two images.

5. Experiments

5.1. Implementation Detail

Dataset. The dataset employed in this study comprises two
key components: the anime video dataset and the image
dataset. The data were preprocessed from Sakuga [56],
ATD-12K [66], and manually collected from the internet.
A total of 1,670 image pairs were selected from animations
to form the test set, and the remaining data constituted the
training set. We then extracted their instances as references.



Table 3. Quantitative Comparisons Across Datasets

TwoTwoTwopt; -Twopt; FID | PSNR 1 SSIM 1 LPIPS |

Dofhima Hand-d Animation  Hand-d

Animation  Hand-di Animation  Hand-d

RSIC(256x) Dataggg 971 300.636 16.93 8.872 0548 0.416 0.508 0.566
SGA(256x) 12473 306.881 19.00 7253 0.621 0414 0.454 0533
AnimeDiffusion(256x) 15478 305.021 11.26 10.207 0.416 0426 0557 0549
ColorizeDiffusion(512x)  128.20 298.673 12882 9817 0492 0349 0475 0613
MangaNinja(512x) 43.16 295223 1428 10.249 0.543 0361 0362 0598
Ours(512x) 28.95 251.301 23.75 10.551 0.783 0434 0.201 0.431

Baseline design. The backbone architecture for both the
UNet and reference net is derived from Stable Diffusion
1.5 [61]. The sketch guider and instance guider are ini-
tialized with pre-trained ControlNet weights. The instance
encoder is initialized using DINOv2.

Hyper-parameters. During training, we resized the height
and weight of the input image to 512 and kept the original
aspect ratio. Our model undergoes 100,000 optimization it-
erations with a batch size of 1. The learning rate is set to
1 x 10~°. The training phase takes around 7 days using 2
NVIDIA A800 80G GPUs. We perform a random horizon
flip and random brightness adjustment for each reference
image as data augmentation to simulate multi-view condi-
tions.

5.2. Comparison
5.2.1. Qualitative Results

To achieve the same settings, we use a complete reference
image as the reference condition for the comparative base-
line methods, and our method employs instances extracted
from the same reference image. We compare our approach
with previous sketch colorization methods. For GAN-based
approaches, we consider RSIC [30] and SGA [36]. RSIC
and SGA utilize GANSs for colorization, each with a dis-
tinct architecture and training strategy. We observe that
GAN-based methods tend to produce color incoordination.
Moreover, when there are numerous color block regions in
the image, color bleeding issues are likely to occur, where
the color of one color block contaminates the adjacent
color blocks. Regarding diffusion-based models, AnimeD-
iffusion [6], ColorizeDiffusion [89], and MangaNinja [44]
(without point guided) perform better in terms of color con-
trol. However, as shown in Figure 0, they still struggle to ef-
fectively transfer the colors from the reference instances to
the line drawing sketch, especially for the colors of smaller
details in the images. The root cause is that the models fail
to fully learn the color correspondences between the origi-
nal image and the reference instances.

5.2.2. Quantitative Results

To comprehensively evaluate the colorization ability of
our model, we quantitatively compared our method with
the state-of-the-art colorization method on our test set.
We constructed an Animation Dataset (1,570 pairs) from
two anime films (Your Name and Spirited Away) and a
Hand-Drawn Dataset (100 pairs) collected from real-user

w/o edge loss

w/o color matching

w/o instance guider

a,

Figure 5. Ablations on each component. “w/o edge loss” indi-
cates without the edge loss, “w/o color matching” indicates with-
out the color matching, “w/o instance guider” indicates without
the instance guider.

Table 4. Quantitative results of ablation study.

FID, PSNR+ SSIM{ LPIPS |

All 62.531 22.587 0.806 0.203

w/o Edge Loss 83.042  20.842 0.755 0.217
w/o Instance Guider 91.852  16.467 0.718 0.308
w/o Color Matching  88.573  20.832 0.749 0.226

sketches as a test set. The results are presented in Table 3.
We did not consider background noise when evaluating the
experimental results. Due to the limited resolution of most
previous work, all measurements are performed at a reso-
lution of 512 x 512. We report four metrics of different
methods. FID gauges visual similarity, with lower values
indicating better quality. PSNR measures distortion, and
higher values imply less distortion. SSIM assesses lumi-
nance, contrast, and structure similarity, with values closer
to 1 showing better structural preservation. LPIPS mea-
sures perceptual similarity, and lower values mean closer
resemblance to the reference. By comparing our model
with these GAN-based and diffusion-based methods using
the established metrics, our approach demonstrates a signif-
icant advantage over previous methods.

5.3. Ablation Study

Effectiveness of Edge Loss. To evaluate edge loss, we
replace its edge loss with the original diffusion loss. Our
method fails to preserve structural edge information, result-
ing in mismatched colors on the apple’s edges, as shown in
the first row of Figure 5. When we eliminate the overall
structure edge loss, the model struggles to maintain subtle
edge features. Numerical evaluations in Table 4 confirm the
importance of structure edge loss for preserving image in-
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Figure 6. Qualitative comparisons with existing methods. Given a line drawing and multiple reference instances, our method demon-
strates far more precise colorization and higher-quality results compared to other methods, effectively maintaining line-drawing structure

and reference instances’ color consistency.

tegrity.

Effectiveness of Color Matching. Removing the color-
matching component diminishes our model’s ability to re-
tain color information and details from input references. For
instance, in the second row of Figure 5, the colors of the bag
and the character’s facial details are inconsistent.
Effectiveness of Instance Guider. To illustrate the effec-
tiveness of our instance guider, we remove it during the ex-
periment. Visual results in Figure 5 show that without this
module, our model struggles to transfer instance-level color
information from references effectively. As can be seen in
the third row, the lack of an instance guider hampers the
learning of instance-level information, leading to significant
color loss and noise in the final results when relying solely
on the reference net.

5.4. Limitations and Discussion

Our method has many advantages and potential applica-
tions, but it also faces several limitations. We summarize
them as follows: (1) Flexible usage: When stylizing the
same sketch with diverse reference images, our method re-
tains the character’s identity. It adjusts details like lighting
and background based on the reference styles. (2) Seman-
tic awareness: For cartoon wallpapers or posters with mul-
tiple characters or objects, our approach uses multiple ref-
erence images to perform semantic-based colorization, en-

suring each line art element gets colorized semantically. (3)
Multi-object and occlusions: Single-subject line art can
efficiently convert a sketch into a vivid, full-colored illus-
tration, speeding up the production and enabling animators
to test different color concepts quickly. However, in sketch
images with many main objects or significant occlusions be-
tween them, the detailed inter-object colors may not be well
maintained. (4) More explorations: The model can accu-
rately color each element in multi-subject scenarios such as
an anime battle scene or a forest scene while maintaining a
harmonious overall color scheme.

6. Conclusion

This paper has presented MagicColor, a diffusion-based
sketch colorization framework. Specifically, we introduce
a multi-instance approach, a two-stage, self-play training
strategy, and pixel-level color matching with edge loss.
Our experiments demonstrated that MagicColor outper-
forms current methods in visual quality and style consis-
tency, advancing the field of digital cartoon colorization. In
future work, we plan to substantially augment the number
of reference instances and enhance the model’s capacity to
maintain semantic and color consistency. We also plan to
release the source code for better collaboration between cre-
ative practitioners and Al researchers.



7. Acknowledagment

This

work was partially supported by the Guangdong

Provincial Key Lab of Integrated Communication, Sens-
ing and Computation for Ubiquitous Internet of Things
#2023B1212010007. The Research Grant Council of the
Hong Kong Special Administrative Region under grant
number 16203122.

References

(1]

(2]

(3]

(4]

(5]

(6]

[7]

(8]

(9]

[10]

Yunpeng Bai, Chao Dong, Zenghao Chai, Andong Wang,
Zhengzhuo Xu, and Chun Yuan. Semantic-Sparse Coloriza-
tion Network for Deep Exemplar-Based Colorization. In
European Conference on Computer Vision, pages 505-521.
Springer, 2022. 2

Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. SURF:
Speeded Up Robust Features. In Computer Vision-ECCV
2006: 9th European Conference on Computer Vision, Graz,
Austria, May 7-13, 2006. Proceedings, Part I 9, pages 404—
417. Springer, 2006. 3

Tim Brooks, Aleksander Holynski, and Alexei A Efros. In-
structPix2Pix: Learning to Follow Image Editing Instruc-
tions. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 18392—
18402, 2023. 2

Mingdeng Cao, Xintao Wang, Zhongang Qi, Ying Shan,
Xiaohu Qie, and Yinqgiang Zheng. Masactrl: Tuning-Free
Mutual Self-Attention Control for Consistent Image Syn-
thesis and Editing. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 22560—
22570, 2023. 3,4, 5

Ruizhi Cao, Haoran Mo, and Chengying Gao. Line Art
Colorization Based on Explicit Region Segmentation. In
Computer Graphics Forum, pages 1-10, 2021. 2

Yu Cao, Xianggiao Meng, PY Mok, Xueting Liu, Tong-
Yee Lee, and Ping Li. AnimeDiffusion: Anime Face Line
Drawing Colorization via Diffusion Models. arXiv preprint
arXiv:2303.11137,2023. 3,7

Hernan Carrillo, Michaél Clément, Aurélie Bugeau, and
Edgar Simo-Serra. Diffusart: Enhancing Line Art Coloriza-
tion with Conditional Diffusion Models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3486-3490, 2023. 2, 3

Evan Casey, Victor Pérez, and Zhuoru Li. The animation
transformer: Visual correspondence via segment matching.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 11323-11332, 2021. 3

Qihua Chen, Yue Ma, Hongfa Wang, Junkun Yuan, Wenzhe
Zhao, Qi Tian, Hongmei Wang, Shaobo Min, Qifeng Chen,
and Wei Liu. Follow-Your-Canvas: Higher-Resolution
Video Outpainting with Extensive Content Generation.
arXiv preprint arXiv:2409.01055, 2024. 3

Xi Chen, Lianghua Huang, Yu Liu, Yujun Shen, Deli Zhao,
and Hengshuang Zhao. Anydoor: Zero-Shot Object-Level
Image Customization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 6593-6602, 2024. 3

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

(22]

(23]

Alex Yong-Sang Chia, Shaojie Zhuo, Raj Kumar Gupta,
Yu-Wing Tai, Siu-Yeung Cho, Ping Tan, and Stephen Lin.
Semantic Colorization With Internet Images. ACM Trans-
actions on Graphics (TOG), 30(6):1-8, 2011. 2

Seokju Cho, Sunghwan Hong, Sangryul Jeon, Yunsung
Lee, Kwanghoon Sohn, and Seungryong Kim. CATs:
Cost Aggregation Transformers for Visual Correspondence.
Advances in Neural Information Processing Systems, 34:
9011-9023, 2021. 3

Zhi Dou, Ning Wang, Baopu Li, Zhihui Wang, Haojie Li,
and Bin Liu. Dual Color Space Guided Sketch Coloriza-
tion. IEEE Transactions on Image Processing, 30:7292—
7304, 2021. 3

Kunyu Feng, Yue Ma, Bingyuan Wang, Chenyang Qi,
Haozhe Chen, Qifeng Chen, and Zeyu Wang. Dit4Edit:
Diffusion Transformer for Image Editing. arXiv preprint
arXiv:2411.03286, 2024. 3

Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik,
Amit H Bermano, Gal Chechik, and Daniel Cohen-Or.
An Image is Worth One Word: Personalizing Text-To-
Image Generation Using Textual Inversion. arXiv preprint
arXiv:2208.01618, 2022. 3

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative Adversarial Nets. Ad-
vances in neural information processing systems, 27, 2014.
3

Sergio Guadarrama, Ryan Dahl, David Bieber, Moham-
mad Norouzi, Jonathon Shlens, and Kevin Murphy. Pix-
Color: Pixel Recursive Colorization.  arXiv preprint
arXiv:1705.07208, 2017. 3

Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman,
Yael Pritch, and Daniel Cohen-Or. Prompt-To-Prompt Im-
age Editing with Cross Attention Control. arXiv preprint
arXiv:2208.01626,2022. 3,4, 5

Li Hu. Animate Anyone: Consistent and Controllable
Image-To-Video Synthesis for Character Animation. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 8153-8163, 2024. 4,
5

Yifei Huang, Sheng Qiu, Changbo Wang, and Chenhui Li.
Learning Representations for High-Dynamic-Range Image
Color Transfer in a Self-Supervised Way. IEEE Transac-
tions on Multimedia, 23:176-188, 2020. 2

Zhitong Huang, Nanxuan Zhao, and Jing Liao. UniColor:
A Unified Framework for Multi-Modal Colorization With
Transformer. ACM Transactions on Graphics (TOG), 41
(6):1-16, 2022. 3

Satoshi lizuka, Edgar Simo-Serra, and Hiroshi Ishikawa.
Let There Be Color! Joint End-To-End Learning of Global
and Local Image Priors for Automatic Image Colorization
With Simultaneous Classification. ACM Transactions on
Graphics (TOG), 35(4):1-11, 2016. 3

Xiaozhong Ji, Boyuan Jiang, Donghao Luo, Guangpin Tao,
Wenging Chu, Zhifeng Xie, Chengjie Wang, and Ying Tai.
Colorformer: Image Colorization via Color Memory As-
sisted Hybrid-Attention Transformer. In European Confer-
ence on Computer Vision, pages 20-36. Springer, 2022. 2



[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

[33]

[34]

[35]

Nikita Karaev, lurii Makarov, Jianyuan Wang, Na-
talia Neverova, Andrea Vedaldi, and Christian Rup-
precht. COTRACKER3: Simpler and Better Point Track-
ing by Pseudo-Labelling Real Videos. arXiv preprint
arXiv:2410.11831,2024. 3

Tero Karras. A Style-Based Generator Architecture
for Generative Adversarial Networks. arXiv preprint
arXiv:1812.04948, 2019. 3

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and Improv-
ing the Image Quality of Stylegan. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 8110-8119, 2020. 3

Hyunsu Kim, Ho Young Jhoo, Eunhyeok Park, and Sungjoo
Yoo. Tag2pix: Line Art Colorization Using Text Tag With
Secat and Changing Loss. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 9056—
9065, 2019. 2

Seungwook Kim, Juhong Min, and Minsu Cho. Transfor-
Matcher: Match-To-Match Attention for Semantic Corre-
spondence. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 8697-8707,
2022. 3

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi
Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer
Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment
Anything. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 4015-4026, 2023.
5

Junsoo Lee, Eungyeup Kim, Yunsung Lee, Dongjun Kim,
Jaehyuk Chang, and Jaegul Choo. Reference-Based Sketch
Image Colorization Using Augmented-Self Reference and
Dense Semantic Correspondence. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 5801-5810, 2020. 7

Jae Yong Lee, Joseph DeGol, Victor Fragoso, and
Sudipta N Sinha. Patchmatch-Based Neighborhood Con-
sensus for Semantic Correspondence. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 13153-13163, 2021. 3

Chenyang Lei and Qifeng Chen. Fully Automatic Video
Colorization With Self-Regularization and Diversity. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 3753-3761, 2019. 3
Leheng Li, Weichao Qiu, Yingjie Cai, Xu Yan, Qing Lian,
Bingbing Liu, and Ying-Cong Chen. SyntheOcc: Synthe-
size Geometric-Controlled Street View Images through 3D
Semantic MPIs. arXiv preprint arXiv:2410.00337, 2024. 6
Leheng Li, Weichao Qiu, Xu Yan, Jing He, Kaigiang Zhou,
Yingjie Cai, Qing Lian, Bingbing Liu, and Ying-Cong
Chen. OmniBooth: Learning Latent Control for Image
Synthesis with Multi-Modal Instruction. arXiv preprint
arXiv:2410.04932,2024. 4

Xinghui Li, Qichao Sun, Pengze Zhang, Fulong Ye,
Zhichao Liao, Wanquan Feng, Songtao Zhao, and Qian
He. Anydressing: Customizable Multi-Garment Virtual
Dressing via Latent Diffusion Models. arXiv preprint
arXiv:2412.04146,2024. 4

10

(36]

(37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

Zekun Li, Zhengyang Geng, Zhao Kang, Wenyu Chen, and
Yibo Yang. Eliminating Gradient Conflict in Reference-
Based Line-Art Colorization. In European Conference on
Computer Vision, pages 579-596. Springer, 2022. 7

Jun Hao Liew, Hanshu Yan, Daquan Zhou, and Jiashi Feng.
MagicMix: Semantic Mixing with Diffusion Models. arXiv
preprint arXiv:2210.16056, 2022. 3

Philipp Lindenberger, Paul-Edouard Sarlin, and Marc
Pollefeys. Lightglue: Local Feature Matching at Light
Speed. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 17627-17638, 2023. 3

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao
Zhang, Jie Yang, Qing Jiang, Chunyuan Li, Jianwei Yang,
Hang Su, et al. Grounding Dino: Marrying Dino With
Grounded Pre-training for Open-Set Object Detection. In
European Conference on Computer Vision, pages 38-55.
Springer, 2025. 5

Xueting Liu, Wenliang Wu, Chengze Li, Yifan Li, and
Huisi Wu. Reference-Guided Structure-Aware Deep Sketch
Colorization for Cartoons. Computational Visual Media, 8:
135-148, 2022. 3

Yifan Liu, Zengchang Qin, Tao Wan, and Zhenbo Luo.
Auto-Painter: Cartoon Image Generation from Sketch by
Using Conditional Wasserstein Generative Adversarial Net-
works. Neurocomputing, 311:78-87, 2018. 3

Zhiheng Liu, Ruili Feng, Kai Zhu, Yifei Zhang, Kecheng
Zheng, Yu Liu, Deli Zhao, Jingren Zhou, and Yang Cao.
Cones: Concept Neurons in Diffusion Models for Cus-
tomized Generation. arXiv preprint arXiv:2303.05125,
2023. 3

Zhiheng Liu, Yifei Zhang, Yujun Shen, Kecheng Zheng,
Kai Zhu, Ruili Feng, Yu Liu, Deli Zhao, Jingren Zhou,
and Yang Cao. Cones 2: Customizable Image Synthesis
With Multiple Subjects. In Proceedings of the 37th In-
ternational Conference on Neural Information Processing
Systems, pages 57500-57519, 2023. 3

Zhiheng Liu, Ka Leong Cheng, Xi Chen, Jie Xiao, Hao
Ouyang, Kai Zhu, Yu Liu, Yujun Shen, Qifeng Chen, and
Ping Luo. MangaNinja: Line Art Colorization with Precise
Reference Following. arXiv preprint arXiv:2501.08332,
2025. 4,7

David G Lowe. Distinctive Image Features from Scale-
Invariant Keypoints. International Journal of Computer Vi-
sion, 60:91-110, 2004. 3

He Lyu, Ningyu Sha, Shuyang Qin, Ming Yan, Yuying Xie,
and Rongrong Wang. Advances in Neural Information Pro-
cessing Systems. Advances in neural information process-
ing systems, 32, 2019. 3

Yue Ma, Yali Wang, Yue Wu, Ziyu Lyu, Siran Chen, Xiu Li,
and Yu Qiao. Visual Knowledge Graph for Human Action
Reasoning in Videos. In Proceedings of the 30th ACM In-
ternational Conference on Multimedia, pages 4132-4141,
2022. 3

Yue Ma, Xiaodong Cun, Yingqing He, Chenyang Qi, Xin-
tao Wang, Ying Shan, Xiu Li, and Qifeng Chen. Mag-
icStick: Controllable Video Editing via Control Handle
Transformations. arXiv preprint arXiv:2312.03047, 2023.



[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Yue Ma, Yingqing He, Xiaodong Cun, Xintao Wang, Siran
Chen, Xiu Li, and Qifeng Chen. Follow Your Pose: Pose-
Guided Text-To-Video Generation Using Pose-Free Videos.
In Proceedings of the AAAI Conference on Artificial Intel-
ligence, pages 4117-4125, 2024.

Yue Ma, Yingqing He, Hongfa Wang, Andong Wang,
Chenyang Qi, Chengfei Cai, Xiu Li, Zhifeng Li, Heung-
Yeung Shum, Wei Liu, et al. Follow-Your-Click: Open-
domain Regional Image Animation via Short Prompts.
arXiv preprint arXiv:2403.08268, 2024.

Yue Ma, Hongyu Liu, Hongfa Wang, Heng Pan, Yingqing
He, Junkun Yuan, Ailing Zeng, Chengfei Cai, Heung-
Yeung Shum, Wei Liu, et al. Follow-Your-Emoji: Fine-
Controllable and Expressive Freestyle Portrait Animation.
arXiv preprint arXiv:2406.01900, 2024. 3

Akinobu Maejima, Hiroyuki Kubo, Takuya Funatomi,
Tatsuo Yotsukura, Satoshi Nakamura, and Yasuhiro
Mukaigawa. Graph Matching Based Anime Colorization
With Multiple References. In ACM SIGGRAPH 2019
Posters, pages 1-2,2019. 2, 3

Yihao Meng, Hao Ouyang, Hanlin Wang, Qiuyu Wang,
Wen Wang, Ka Leong Cheng, Zhiheng Liu, Yujun Shen,
and Huamin Qu. AniDoc: Animation Creation Made Eas-
ier. arXiv preprint arXiv:2412.14173,2024. 3

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy
Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez,
Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al.
DINOV?2: Learning Robust Visual Features without Super-
vision. arXiv preprint arXiv:2304.07193,2023. 3, 4

Yulin Pan, Chaojie Mao, Zeyinzi Jiang, Zhen Han, and
Jingfeng Zhang. Locate, Assign, Refine: Taming Cus-
tomized Image Inpainting with Text-Subject Guidance.
arXiv preprint arXiv:2403.19534, 2024. 3
Zhenglin Pan, Yu Zhu, and Yuxuan Mu.
Dataset: Scaling Up Cartoon Research.
arXiv:2405.07425,2024. 6

William Peebles, Jun-Yan Zhu, Richard Zhang, Anto-
nio Torralba, Alexei A Efros, and Eli Shechtman. Gan-
Supervised Dense Visual Alignment. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1347013481, 2022. 2, 3

Yingge Qu, Tien-Tsin Wong, and Pheng-Ann Heng. Manga
Colorization. ACM Transactions on Graphics (TOG), 25
(3):1214-1220, 2006. 2

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing Transferable Visual Models from Natural Language Su-
pervision. In International conference on machine learning,
pages 8748-8763. PMLR, 2021. 4

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Bjorn Ommer. High-Resolution Image
Synthesis with Latent Diffusion Models. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10684—10695, 2022. 3

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Bjorn Ommer. High-Resolution Image

Sakuga-42M
arXiv preprint

11

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

Synthesis with Latent Diffusion Models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10684-10695, 2022. 7
Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch,
Michael Rubinstein, and Kfir Aberman. DreamBooth: Fine
Tuning Text-to-Image Diffusion Models for Subject-Driven
Generation. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 22500—
22510, 2023. 3,4

Mehdi Safaee, Aryan Mikaeili, Or Patashnik, Daniel
Cohen-Or, and Ali Mahdavi-Amiri. CLiC: Concept Learn-
ing in Context. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
6924-6933, 2024. 3

Patsorn Sangkloy, Jingwan Lu, Chen Fang, Fisher Yu, and
James Hays. Scribbler: Controlling Deep Image Synthesis
with Sketch and Color. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
5400-5409, 2017. 2

Johannes L Schonberger and Jan-Michael Frahm.
Structure-From-Motion Revisited.  In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 4104-4113, 2016. 3

Li Siyao, Shiyu Zhao, Weijiang Yu, Wenxiu Sun, Dimitris
Metaxas, Chen Change Loy, and Ziwei Liu. Deep Ani-
mation Video Interpolation in the Wild. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 6587-6595, 2021. 6

Jiaming Song, Chenlin Meng, and Stefano Ermon. De-
noising Diffusion Implicit Models. arXiv preprint
arXiv:2010.02502, 2020. 3

Yizhi Song, Zhifei Zhang, Zhe Lin, Scott Cohen, Brian
Price, Jianming Zhang, Soo Ye Kim, and Daniel Aliaga.
ObjectStitch: Object Compositing with Diffusion Model.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 18310-18319, 2023.
3

Jheng-Wei Su, Hung-Kuo Chu, and Jia-Bin Huang.
Instance-Aware Image Colorization. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 7968—7977, 2020. 3

Wei Sun and Tianfu Wu. Learning Layout and Style Re-
configurable Gans for Controllable Image Synthesis. 3
Wei Sun and Tianfu Wu. Image Synthesis From Re-
configurable Layout and Style. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 10531-10540, 2019. 3

Vadim Sushko, Edgar Schonfeld, Dan Zhang, Juergen Gall,
Bernt Schiele, and Anna Khoreva. You Only Need Ad-
versarial Supervision for Semantic Image Synthesis. arXiv
preprint arXiv:2012.04781, 2020. 3

Luming Tang, Menglin Jia, Qianqgian Wang, Cheng Perng
Phoo, and Bharath Hariharan. Emergent Correspondence
from Image Diffusion. Advances in Neural Information
Processing Systems, 36:1363—-1389, 2023. 3

Luming Tang, Nataniel Ruiz, Qinghao Chu, Yuanzhen Li,
Aleksander Holynski, David E Jacobs, Bharath Hariharan,



[75]

[76]

[77]

[78]

[79]

[80]

[81]

(82]

[83]

[84]

[85]

[86]

Yael Pritch, Neal Wadhwa, Kfir Aberman, et al. RealFill:
Reference-Driven Generation for Authentic Image Comple-
tion. ACM Transactions on Graphics (TOG), 43(4):1-12,
2024. 3

Narek Tumanyan, Michal Geyer, Shai Bagon, and Tali
Dekel. Plug-and-Play Diffusion Features for Text-Driven
Image-to-Image Translation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1921-1930, 2023. 3

Chaitat Utintu, Pinaki Nath Chowdhury, Aneeshan Sain,
Subhadeep Koley, Ayan Kumar Bhunia, and Yi-Zhe Song.
SketchDeco: Decorating B&W Sketches with Colour.
arXiv preprint arXiv:2405.18716, 2024. 3

Bingyuan Wang, Qifeng Chen, and Zeyu Wang. Diffusion-
Based Visual Art Creation: A Survey and New Perspec-
tives. arXiv preprint arXiv:2408.12128, 2024. 3

Bingyuan Wang, Hengyu Meng, Rui Cao, Zeyu Cai, Lan-
jiong Li, Yue Ma, Qifeng Chen, and Zeyu Wang. Mag-
icScroll: Enhancing Immersive Storytelling with Control-
lable Scroll Image Generation. In 2025 IEEE Conference
Virtual Reality and 3D User Interfaces (VR). IEEE, 2025. 3
Jiangshan Wang, Yue Ma, Jiayi Guo, Yicheng Xiao, Gao
Huang, and Xiu Li. COVE: Unleashing the Diffusion Fea-
ture Correspondence for Consistent Video Editing. arXiv
preprint arXiv:2406.08850, 2024. 3

Jiangshan Wang, Junfu Pu, Zhongang Qi, Jiayi Guo, Yue
Ma, Nisha Huang, Yuxin Chen, Xiu Li, and Ying Shan.
Taming Rectified Flow for Inversion and Editing. arXiv
preprint arXiv:2411.04746, 2024. 3

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,
Jan Kautz, and Bryan Catanzaro. High-Resolution Im-
age Synthesis and Semantic Manipulation with Conditional
Gans. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 8798-8807, 2018. 3
Xiaolong Wang, Allan Jabri, and Alexei A Efros. Learn-
ing Correspondence From the Cycle-Consistency of Time.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 2566-2576, 2019. 3
Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P
Simoncelli. Image Quality Assessment: From Error Visi-
bility to Structural Similarity. 3

Shukai Wu, Yuhang Yang, Shuchang Xu, Weiming Liu,
Xiao Yan, and Sanyuan Zhang. FlexIcon: Flexible Icon
Colorization via Guided Images and Palettes. In Proceed-
ings of the 31st ACM International Conference on Multime-
dia, pages 8662-8673, 2023. 3

Shaoan Xie, Yang Zhao, Zhisheng Xiao, Kelvin CK
Chan, Yandong Li, Yanwu Xu, Kun Zhang, and Tingbo
Hou. Dreamlnpainter: Text-Guided Subject-Driven Im-
age Inpainting With Diffusion Models. arXiv preprint
arXiv:2312.03771,2023. 3

Zhongcong Xu, Jianfeng Zhang, Jun Hao Liew, Han-
shu Yan, Jia-Wei Liu, Chenxu Zhang, Jiashi Feng, and
Mike Zheng Shou. MagicAnimate: Temporally Consistent
Human Image Animation Using Diffusion Model. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 1481-1490, 2024. 3

12

[87]

[88]

[89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

(98]

[99]

Jingyun Xue, Hongfa Wang, Qi Tian, Yue Ma, Andong
Wang, Zhiyuan Zhao, Shaobo Min, Wenzhe Zhao, Kaihao
Zhang, Heung-Yeung Shum, et al. Follow-Your-Pose v2:
Multiple-Condition Guided Character Image Animation for
Stable Pose Control. arXiv preprint arXiv:2406.03035,
2024. 3

Dingkun Yan, Ryogo Ito, Ryo Moriai, and Suguru Saito.
Two-Step Training: Adjustable Sketch Colourization via
Reference Image and Text Tag. In Computer Graphics Fo-
rum, page e14791, 2023. 3

Dingkun Yan, Liang Yuan, Erwin Wu, Yuma Nishioka, Is-
sei Fujishiro, and Suguru Saito. Colorizediffusion: Ad-
justable Sketch Colorization With Reference Image and
Text. arXiv preprint arXiv:2401.01456, 2024. 3,7

Binxin Yang, Shuyang Gu, Bo Zhang, Ting Zhang, Xuejin
Chen, Xiaoyan Sun, Dong Chen, and Fang Wen. Paint by
Example: Exemplar-Based Image Editing with Diffusion
Models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 18381—
18391, 2023. 3

Shenghai Yuan, Jinfa Huang, Xianyi He, Yunyuan Ge, Yu-
jun Shi, Liuhan Chen, Jiebo Luo, and Li Yuan. Identity-
Preserving Text-to-Video Generation by Frequency De-
composition. arXiv preprint arXiv:2411.17440, 2024. 3
Shenghai Yuan, Jinfa Huang, Yujun Shi, Yongqi Xu, Ruijie
Zhu, Bin Lin, Xinhua Cheng, Li Yuan, and Jiebo Luo. Mag-
icTime: Time-Lapse Video Generation Models as Meta-
morphic Simulators. arXiv preprint arXiv:2404.05014,
2024.

Nir Zabari, Aharon Azulay, Alexey Gorkor, Tavi Halperin,
and Ohad Fried. Diffusing Colors: Image Colorization with
Text Guided Diffusion. In SIGGRAPH Asia 2023 Confer-
ence Papers, pages 1-11, 2023. 3

Bo Zhang, Mingming He, Jing Liao, Pedro V Sander, Lu
Yuan, Amine Bermak, and Dong Chen. Deep Exemplar-
Based Video Colorization. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 8052-8061, 2019. 2

Lvmin Zhang, Chengze Li, Tien-Tsin Wong, Yi Ji, and
Chunping Liu. Two-stage Sketch Colorization. ACM Trans-
actions on Graphics (TOG), 37(6):1-14, 2018. 2, 3

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding
Conditional Control to Text-to-Image Diffusion Models. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 3836-3847, 2023. 3, 4

Qian Zhang, Bo Wang, Wei Wen, Hai Li, and Junhui Liu.
Line Art Correlation Matching Feature Transfer Network
for Automatic Animation Colorization. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Com-
puter Vision, pages 3872-3881, 2021. 3

Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful
Image Colorization. In Computer Vision—-ECCV 2016: 14th
European Conference, Amsterdam, The Netherlands, Octo-
ber 11-14, 2016, Proceedings, Part 11l 14, pages 649—666.
Springer, 2016. 3

Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful
Image Colorization. In Computer Vision—ECCV 2016: 14th



[100]

[101]

[102]

[103]

[104]

European Conference, Amsterdam, The Netherlands, Octo-
ber 11-14, 2016, Proceedings, Part 11l 14, pages 649—666.
Springer, 2016. 2

Youcai Zhang, Xinyu Huang, Jinyu Ma, Zhaoyang Li,
Zhaochuan Luo, Yanchun Xie, Yuzhuo Qin, Tong Luo,
Yaqian Li, Shilong Liu, et al. Recognize Anything: A
Strong Image Tagging Model. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1724-1732,2024. 5

Hengyuan Zhao, Wenhao Wu, Yihao Liu, and Dongliang
He. Color2Embed: Fast Exemplar-Based Image Col-
orization Using Color Embeddings. arXiv preprint
arXiv:2106.08017,2021. 2

Jiaojiao Zhao, Jungong Han, Ling Shao, and Cees GM
Snoek. Pixelated Semantic Colorization. [International
Journal of Computer Vision, 128:818-834, 2020. 3
Chenyang Zhu, Kai Li, Yue Ma, Chunming He, and Xiu Li.
MultiBooth: Towards Generating All Your Concepts in an
Image from Text. arXiv preprint arXiv:2404.14239, 2024.
’%

Chenyang Zhu, Kai Li, Yue Ma, Longxiang Tang, Chengyu
Fang, Chubin Chen, Qifeng Chen, and Xiu Li. InstantSwap:
Fast Customized Concept Swapping across Sharp Shape
Differences. arXiv preprint arXiv:2412.01197,2024. 3

13



	Introduction
	Related Work
	Line Art Colorization
	Visual Correspondence
	Reference-Based Image Colorization

	Preliminaries
	Latent Diffusion Model
	Reference Condition Injection

	Method
	Self-Play Training Strategy
	Instance Control Module
	Structure-Content Supervision Enhancement

	Experiments
	Implementation Detail
	Comparison
	Qualitative Results
	Quantitative Results

	Ablation Study
	Limitations and Discussion

	Conclusion
	Acknowledagment

