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 A B S T R A C T

Line art is a fundamental yet powerful form of artistic expression. In this paper, we introduce a novel task 
aimed at enhancing novice understanding of reproducibility in line drawings: reconstructing the stroke-by-
stroke drawing process from complex line art. This task poses substantial challenges, as it requires resolving 
stroke ambiguity, variations in stroke thickness, and stroke overlapping. To address these issues, we propose 
a hierarchical framework that emulates human drawing behavior, comprising three stages: (1) high-level 
generation of global semantic stroke order, (2) mid-level optimization of human drawing mechanics, and (3) 
low-level perceptual stroke rendering. Drawing inspiration from the human tendency to conceptualize the 
overall structure before refining local details, we first extract keyframes of the drawing sequence that guide 
global ordering using a diffusion-based model. Simultaneously, based on the assumption that humans can 
infer strokes from any cue point in a line drawing, we train a stroke renderer to extract variable-width sub-
strokes at the pixel level. Lastly, we formulate a set of equations to model human drawing dynamics, enabling 
more detailed inference of stroke composition and sequencing within the identified keyframes. This framework 
effectively integrates high-level semantic understanding with low-level stroke reconstruction, facilitating 
stroke-level process recovery in complex line drawings. Extensive experiments and user studies demonstrate 
that our method produces relatively natural and coherent drawing process animations for high-quality line art.
1. Introduction

Artistic line drawing, or line art, is a fundamental form of visual 
expression in which monochromatic strokes — varying in thickness, 
curvature, and density — delineate contours, structures, and spatial 
relationships within a composition. As a highly abstracted representa-
tion of visual information, the creation of line art inherently reflects 
human cognitive strategies for decomposing complex subjects into 
hierarchical geometric primitives. This intrinsic connection positions 
the reconstruction of the line art drawing process as an interdisciplinary 
challenge at the intersection of computer graphics and the study of 
perceptual mechanisms in artistic cognition. In this paper, we focus on 
‘‘complex’’ line arts, defined as high-resolution images characterized by 
intricate stroke topology and a clean background, without the influence 
of real-world lighting or shading. A typical example is the line art 
found in digital illustrations. Despite their apparent simplicity, such 
drawings are difficult for novices to reproduce. Even when tasked 
with replicating a given drawing in this style, novices often struggle 
to determine where to begin, highlighting the need for tools that can 
reveal and guide the underlying drawing process.

∗ Corresponding author.
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Recent advancements in artificial intelligence have shown promis-
ing results in reconstructing the drawing process for paintings from 
real-world images using stroke-based rendering approaches [1–4] or 
pixel-based simulation techniques [5–8]. When the input is a line 
drawing, prior work has primarily focused on stroke ordering [9] after 
a vectorization process [10–13]. However, these methods encounter 
critical limitations when applied to ‘‘complex line art’’ due to three 
intrinsic challenges: (1) The explicit nature of strokes, such as sharp 
tails and non-uniform widths, necessitates pixel-precise decomposition 
rather than probabilistic stroke approximation using parameterized 
brushes [1–3] or fixed-width vector representations [10,12,13]. (2) The 
presence of overlapping strokes introduces exponential combinatorial 
ambiguities in topological ordering [9,14]. (3) The absence of color and 
texture information heightens reliance on geometric reasoning to infer 
plausible temporal sequences from static inputs [4,8], a challenge that 
existing methods struggle to address effectively.

Motivated by these gaps, we introduce LineDrawer, a framework 
that directly infers stroke sequences from raster images of complex line 
art. In this context, a stroke refers to a continuous line with variable 
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Fig. 1. Line art drawing process reconstruction. Given a line art, our method reconstructs the stroke-by-stroke drawing process. The first column of each line 
shows the input drawing, followed by keyframes showing the reconstructed sequence of strokes in color. The varying colors indicate the segmentation mask 
corresponding to each individual stroke. The global reference in the lower right corner of each keyframe is a raster image generated from a diffusion model and 
does not contain any stroke information. Visually, these global references match the corresponding keyframes in our stroke-by-stroke reconstruction process.
].
thickness drawn by a pen. Inspired by the natural drawing behavior 
of artists, we propose a three-level hierarchical approach that models 
(1) high-level semantic intent, (2) mid-level drawing heuristics, and 
(3) low-level stroke perception. In the first stage, we employ a pre-
trained diffusion model, PaintsUndo [5], to generate a semantic-level 
drawing sequence, which serves as implicit guidance for global stroke 
ordering. In the second stage, a neural network trained to simulate 
human perceptual inference maps cue regions to variable-width local 
sub-strokes. Finally, the third stage introduces a habitual function that 
captures human drawing mechanics to merge local sub-strokes and 
optimize a globally coherent stroke sequence.

In summary, our contributions are as follows:

• We introduce a novel sub-stroke perceptual rendering approach 
that extracts corresponding strokes from complex line art using 
a localized cue-aware mechanism, simulating human cognitive 
perception of strokes.

• We propose a human mechanical optimization strategy to recon-
struct the stroke-level drawing process for complex line arts, effec-
tively connect both high-level semantics and low-level stroke de-
tails, and overcome the hallucination in the original PaintsUndo [5

• Through experiments and user studies, we demonstrate that our 
method generates faithful, artist-like drawing sequences for com-
plex line arts, surpassing existing approaches in accuracy and 
coherence.

2. Related work

2.1. Drawing process reconstruction

‘‘Drawing process’’ is a general concept involving various media 
and different drawing stages. As for process reconstruction of stylized 
drawings, we refer readers to [1–4,6–8] for a more thorough review. 
Here we mainly discuss the more related literature on line drawings, 
commonly involved in the draft stage of all kinds of drawings using a 
pen or a stylus.

Early work can be traced back to a simpler problem setting - how to 
generate a reasonable drawing order given a sequence of strokes [9,15]. 
Fu et al. [9] design the computational procedures to mimic the key 
principles of drawing order from drawing cognition. Liu et al. [15] 
further divide the drawing process into different phases and propose 
entropy-based stroke selection and ordering. Their limitation lies in 
the poor generalization ability due to the heuristic algorithm and long 
calculation time, given complex line drawings with several hundred 
strokes as input.

A later stream of work attempts to sequentially construct stroke-
based drawings of common objects [16–19]. Ha et al. [16] model sketch 
drawings using recurrent neural networks, which enables interesting 
2 
applications such as ending prediction of incomplete drawings and 
conditional reconstruction. However, an obvious visual bias can be 
observed comparing the user input drawing and the reconstructed one. 
Based on the sequential generative model by [16], Song et al. [17] 
propose a stroke-level photo-to-sketch synthesis model. Their meth-
ods can only generate abstract symbolic drawings requiring separate 
training for distinct object categories, which are also limited by the 
complexity of the drawing and the generalization ability. Methods from 
Huang et al. [18,19] can generate complete portraits that partially 
match incomplete sketches through either a two-stage [18] or stroke-
by-stroke [19] drawing process. However, their temporal sequence of 
generated results during the drawing process exhibits inconsistency.

Recently, PaintsUndo [5] attempts to model the drawing process 
of anime drawings. Different from previous work targeting at placing 
strokes by a single media, PaintsUndo mimics all kinds of human behav-
iors during the drawing process, including sketching, inking, coloring, 
shading, transforming, layer operation, and other decision-making pro-
cesses. We extract the sketching stage prediction from PaintsUndo as 
the global reference for our process reconstruction pipeline. However, 
it cannot generate the drawing process stroke by stroke, and the gen-
erated frames are often inconsistent, caused by hallucination. Thus, we 
applied a global optimization to eliminate these negative effects. Fig.  2 
gives 15 frames of global reference for each line art corresponding to 
Fig.  1, where we successfully removed the hallucination frames.

2.2. Stroke extraction

Previous stroke segmentation methods [20,21] can effectively seg-
ment symbolic drawings with few strokes in QuickDraw [22]. Kim 
et al. [20] employ a deep neural network to detect pixel-pair simi-
larity and segment strokes from the original raster line drawing by 
labeling all foreground pixels based on this similarity. The process-
ing time of this method increases exponentially with the number of 
foreground pixels, which makes it impractical to scale up to high-
resolution line drawings. Ito et al. [21] further enhance the efficiency 
of the aforementioned method, though this improvement comes at the 
cost of reduced segmentation accuracy. Despite these efforts, handling 
more complex topologies remains challenging for them when dealing 
with high-resolution drawings. Due to the small kernel sizes in their 
proposed networks, they struggle with complex drawings containing 
significantly more strokes. Our method addresses this limitation by em-
ploying an active window size of 512 × 512, enabling the segmentation 
of longer strokes across images of arbitrary size.

Another workflow that can extract paths of strokes from a given 
line drawing is often known as vectorization. Noris et al. [23] extract 
stroke topology and centerlines using image gradients alone, which 
provides insufficient local information, resulting in unreliable vector 
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Fig. 2. The hallucination of PaintsUndo [5] may not occur (Row 1), may occur in intermediate frames (Row 2), or only in the first few frames (Row 3). Our 
method discriminates the hallucination frames (red box) and uses the rest of the keyframes as global references.
Fig. 3. Given an input line art (a), our method consists of three intermediate modules that simulate human drawing behavior: (1) a diffusion prior used to obtain 
a global reference sequence (d) for guidance; (2) a stroke renderer trained to generate sub-strokes (c); and (3) human mechanical optimization, encompassing 
topology optimization, hallucination removal, and process generation.
strokes. Guo et al. [24] propose a two-phase approach for local and 
global topology reconstruction. Bessmeltsev and Solomon [10] effec-
tively vectorize simple line drawings using a graph-based approach 
with PolyVector fields. Yet, their method relies on pre-defined X and 
T-junctions, limiting its ability to handle more complex topology struc-
tures. Mo et al. [11] introduce a dynamic window to iteratively search 
and vectorize undrawn areas. Due to their window searching strategy, 
their method tends to generate short, consecutive strokes and may 
miss details in highly complex drawings. Puhachov et al. [12] use key-
point detection to guide graph construction and then optimize it with 
PolyVector Field. However, its success depends heavily on keypoint 
detection accuracy. Yan et al. [13] adopt a pairwise training strategy, 
mapping one line drawing to one single ground truth vector drawing. 
We doubt the existence of only one ‘‘correct’’ topology in ambiguous 
cases, as there may be several reasonable solutions. In contrast, we 
adopt a cue-wise stroke extraction strategy to encourage reasonable 
stroke orientation given a query region, therefore not limiting to finding 
the only ‘‘correct’’ stroke segmentation when facing ambiguity. In this 
case, our method can handle line drawings with complex topologies 
more flexibly.

3. Method

3.1. Problem formulation

Given a drawing process consisting of 𝑛 strokes 𝑃 =
{𝑠1, 𝑠2,… , 𝑠𝑘,… , 𝑠𝑛}, its final drawing result is 𝐼 = Draw(𝑃 ), where 𝑠𝑘
is the 𝑘th stroke on the rendered image 𝐼 , function Draw(⋅) generates 
the stroke-by-stroke drawing process 𝑃 . Our goal is to find the inverse 
function Draw−1 that predicts the drawing process 𝑃 ′, where 𝑃 ′ =
Draw−1(𝐼), 𝑃 ′ = {𝑠′1, 𝑠

′
2,… , 𝑠′𝑛}. To minimize the difference between the 

original drawing process 𝑃  and the predicted 𝑃 ′, we have the objective 
function  : 
 = min(𝑃 , 𝑃 ′) (1)
3 
Based on the general drawing principles - from macro to detail, we 
divide the factors of the loss function  into the following two: (1) 
overall stroke order, and (2) shape of each single stroke. (1) and (2) 
correspond to the global and local information of the overall process 
reconstruction, respectively. Consequently, we decompose the problem 
into two relatively independent sub-problems, resulting in a smaller 
solution space.

Sub-problem (1): stroke order prediction. Given the disordered 
strokes, we introduce a reference sequence of the drawing process that 
imitates how an artist draws. A reference sequence here is a series of 
snapshots arranged chronologically during the drawing process.

Denote the timestamp of the drawing process as 𝑡 ∈ {0, 1,… , 𝑁}, 
the global reference at moment 𝑡 as 𝑅𝑡, and the newly generated stroke 
at moment 𝑡 as 𝑠𝑡. The global reference at moment 𝑡 should be a sum of 
the generated strokes from time step 0 to 𝑡, that is 𝑅𝑡 = 𝛴𝑡

𝑘=0 Draw(𝑠𝑘). 
The global reference between moment 𝑖 and moment 𝑗 should satisfy 
𝑅𝑗 − 𝑅𝑖 = 𝛴𝑗

𝑘=𝑖 Draw(𝑠𝑘). Therefore, the objective function of the 
sub-problem (1) is simplified as 

1 = 𝑔(𝑅𝑗 − 𝑅𝑖,
𝑗
∑

𝑘=𝑖
Draw(𝑠𝑘)) (2)

where 𝑔 is the general loss function for sub-problem (1).
The introduction of global reference sequences simplifies the orig-

inal long-term prediction problem into a short-term layer matching 
problem between several drawing sequences.

Sub-problem (2): stroke rendering. Given the stroke order in the 
generated drawing process 𝑃 ′, we can focus on rendering each single 
stroke 𝑠𝑘 by minimizing the loss 2 between the ground-truth strokes 
𝑠𝑘 and predicted strokes 𝑠′𝑘: 

2 =
∑

𝑘∈{0,1,…,𝑁}
𝑐 (𝑠𝑘, 𝑠′𝑘) (3)

where 𝑐 is the loss function for local optimization. Since sub-problems 
1 and 2 interact with each other, we introduce an human drawing 



Z. Huang et al. Computers & Graphics 132 (2025) 104365 
Fig. 4. Ablation study of our proposed loss function. The results demonstrate that using our loss produces outputs most similar to the ground truth stroke (green) 
when provided with the same input (red point and black line drawing). By the 1500th training iteration, CNNV optimized with our loss function begins to 
converge, whereas Dice fails to capture the stroke shape, and MSE tends to output only the background image.
mechanical optimization, which is further decomposed into drawing 
process generation and a topology optimization.

3.2. Overview

Our pipeline is shown in Fig.  3. We generate local strokes and 
the global reference sequence of the input line drawings separately, 
and then further combine the quality of the drawings through human 
mechanical optimization.

3.3. Local stroke rendering network

Since the drawing process prediction is the inverse process of draw-
ing creation, we start from sub-problem (2) single-stroke generation. 
To solve Eq. (3), we construct the graph 𝐺(𝑉 ,𝐸) based on a skeleton 
map of the input line art, where 𝑉  includes the stroke endpoints and 
their intersections, 𝐸 includes all paths between two adjacent vertices. 
For each path 𝑒 ∈ 𝐸, there is a geometrically corresponding stroke 𝑠. 
And it is allowed that more than one 𝑒 pairs an identical stroke. In 
this case, the part corresponding to e is considered as a sub-stroke. 
Thus, we transform the problem to train a sub-stroke renderer CNN 
such that 2 = 𝛴(CNN𝐸 (𝑒), 𝑠) Since there may be short paths whose 
len(𝑒.path) ≤ 𝑉𝑡ℎ threshold or generating pseudo-paths on the intricate 
line arts of the strokes, we further relax the correspondence from 𝑒 to 
the associated point 𝑣𝑒 = Sampling(𝑒) and use this to train a sub-stroke 
renderer CNN such that predicted strokes 𝑠′ = CNN𝐸 (𝑒) to make the 
results more stable. If 𝑣 is belong to stroke 𝑠𝑘, then there exists a sub-
stroke 𝑠𝑠𝑣 = CNN𝑉 (𝑣) ∈ 𝑠𝑘, and 𝑠𝑘 = ∪𝑠𝑠𝑣. So our optimization objective 
is 
2 = minc𝑠𝑘,Merge𝑒∈𝐸 (CNNV(Sampling(𝑒))

if (len(𝑒.𝑝𝑎𝑡ℎ) ≤ 𝑉𝑡ℎ) else ∶ CNNE(𝑒))
(4)

Network architecture. Our model comprises two identical encoder–
decoder pairs based on a fully convolutional network (CNN) architec-
ture, as depicted in Fig.  3. The first CNN, referred to as CNN𝑉 , takes 
as input a point positioned on a stroke and outputs its correspond-
ing stroke. Following CNN𝑉 , the second CNN, denoted as CNN𝐸 , is 
designed to render the full strokes from edge 𝑒.

Inspired by ResNet [25] and Smart Inker [26], each CNN in our 
framework comprises 24 layers, primarily using Conv-BatchNorm-ReLU 
blocks. The network downsamples the input three times using convolu-
tions and restores it to its original size through sub-pixel convolutions, 
allowing the input image size to be any integer multiple of 8. To avoid 
the error-prone nature of zero-padding, the first layer employs a 9 × 9 
pixel kernel with 4 × 4 reflective padding. Both our CNN𝑉  and CNN𝐸
share the same architecture as Table  A.1 shown in Appendix  A.

Loss function. To specify the loss function 𝐿𝑐 in Eq.  (3), we must 
account for the imbalance between the output rendering strokes and the 
background, where negative samples (background) typically dominate. 
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Fig. 5. Data augmentation. We show the stroke replacement with different 
probabilities. Either the original stroke or the replaced stroke can be selected. 
As the replacement probability p increases, the line art gradually loses the 
original information. In addition, the shape of the red input point has a certain 
randomness in the drawing.

To address this, we adopt a loss function that combines Dice loss [27] 
with Mean Squared Error (MSE) loss 𝐿2: 

𝑐 = 𝛼 ⋅ 𝐿2(𝑠𝑖,𝜃(𝐼𝑐 , 𝑥𝑖))

+(1 − 𝛼)𝐷𝑖𝑐𝑒(𝑠𝑖,𝜃(𝐼𝑐 , 𝑥𝑖))
(5)

where 𝛼 = 0.09. The notations are consistent with those in Eq.  (3). MSE 
is a natural choice as it encourages the strokes to maintain their original 
shapes, while Dice loss is advantageous due to its robustness against 
class imbalance. It effectively handles the disparity in the number of 
positive and negative samples, allowing the model to focus more on ac-
curately rendering the smaller strokes. Otherwise, due to the imbalance 
of positive and negative samples, training with MSE or DICE loss alone 
tends to be unstable, ultimately leading to the generation of pure white 
images regardless of the input prompts. We illustrate the effectiveness 
of our proposed loss function in Fig.  4. Given the imbalanced ratio 
of positive to negative labels in the output, relying solely on MSE 
disproportionately emphasizes negative samples, resulting in outputs 
consisting exclusively of background images.

Data synthesis. To validate the stroke order and learn the stroke 
rendering of hand-drawn high-quality line arts, we collected data as 
described in Section 4. To stabilize training and avoid overfitting, 
we add random stroke replacement in addition to random rotation, 
inversion, and scaling, which is used to correspond to various complex 
topologies. As shown in Fig.  5, we replace the original strokes with 
a certain probability 𝑝 to the arcs with the same starting and ending 
points, which can increase the diversity of strokes and enable us to 
get the stroke renderer in a limited number of samples and realize the 
few-shot learning of CNNV and CNNE.

Two-stage training. As Fig.  6 shows, in Stage I, we randomly crop 
a patch from the original line art as the active window, select a stroke 
from it, and randomly generate a small dot (red). We then generate 
a mask for this small red dot and concatenate it with the cropped 
original line art to create a two-channel image as input. Due to the 
local connectivity of CNN, CNNV with one point input has difficulty in 
corresponding to a long stroke (Fig.  7).
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Fig. 6. Two-stage stroke renderer training. Our input for both CNNs is a 2-
channel image. Once a stroke (green) is selected, we only need to sample 
a random query region (red) on this stroke for CNNV in Stage I, and its 
output is the input of CNNE. Note that before Stage II starts, CNNV copies 
the parameters to CNNE as initialization, and that both CNNs are trained at 
Stage II.

After training, we obtain two CNNs as shown in Fig.  6. They are 
used for different types of inputs, and we show this separately in 
Fig.  7: CNNV can render strokes for the intersection part of strokes, 
but the results are usually localized; CNNE is effective for rendering 
long strokes. In the practical inference, we chose an active window of 
512 × 512 to improve the computing speed. To render strokes that may 
exceed the size of the window, we split the input (𝑒.path) of CNNE
into 𝐾 line segments (according to len(𝑒.path)), with partial sharing 
between the successive segments, and merge the final result into a 
stroke.

3.4. High-level stroke order generation

Typically, the best way to obtain a global painting process is 
to record the entire process and then generate snapshots. However, 
such data is not easy to collect and obtain, so we used the method 
PaintsUndo [5] to predict a reasonable sequence of painting processes 
from the diffusion model. Since we have already obtained a sequence 
global reference {𝑅𝑖} of the drawing process from the time 𝑖 from 0 to 
𝑇  time, we convert the objective of Eq.  (2) into 

1 =
𝑇
∑

𝑖=0
𝑔(𝑅𝑖,

𝑖
∑

𝑘=0
Draw(𝑠𝑘)) (6)

This means that each sub-stroke should belong to the frame in which 
it first appeared. In the actual implementation, all the sub-strokes go 
frame by frame along the chronological order to find the best match. 
For 𝑅𝑖 and a certain sub-stroke 𝑠𝑘 at time 𝑖, our determination function 
 is 

 =
Area(𝑅𝑖

⋂

Draw(𝑠𝑘))
Area(Draw(𝑠𝑘))

(7)

where function Area(⋅) calculates the pixel-level area of its input raster 
image, and we determine which frame a stroke should belong to by 
setting the hyperparameter 𝑀𝑡ℎ. This method eliminates the hallucina-
tions from the reference.

Hallucination removal. Our stroke-level rendering module oper-
ates as a self-contained system that functions without requiring any 
global reference image. This architecture endows our method with 
intrinsic hallucination detection capabilities: whenever PaintsUndo’s 
prediction sequence exhibits either (Rule 1) dissimilarity to the original 
5 
sketch in overlapping regions or (Rule 2) temporal discontinuity with 
the previous frame, we categorize such a frame as a hallucination.

To simplify and speed up the calculation, we use Eq.  (7) to pre-
calculate the neighboring frames as well as the current frame between 
the input frames to determine whether the current frame is a hallucina-
tion image or not, which implements the hallucination removal in Figs. 
2 and 3. In this step, we use a relatively strict condition for distinction 
and the corresponding rules are:

• Rule 1. Hyperparameter 𝑀𝑡ℎ = 0.6.
• Rule 2. The number of pixels in the previous frame is greater than 
the next (continuity law)

3.5. Human mechanical optimization

So far, we have obtained global references for high-level semantics 
and sub-strokes for low-level semantics. Our next task is to perform an 
optimization that mimics the artist’s behavior and synthesizes a mean-
ingful order. In the context of line art, the primary factor influencing 
stroke order is user habit, which is unique to each user. This assertion 
is corroborated by the findings of Qiu et al. [14], which demonstrate 
that even when stroke orders from professional artists, 35.94% of 
participants perceive them as computer-generated rather than hand-
drawn. Nevertheless, the remaining 64.06% demonstrate the existence 
of similarities. Consequently, by observing the artists’ drawing behavior 
during the data collection process, we simplified the primary factors to 
two: the smoothness of the line strokes  and the mechanics of the 
drawing .

Mechanics of the drawing. Artists use strategies that are more 
comfortable for themselves, including drawing outlines before details, 
fewer hand movements when drawing the same object, from left to 
right (if right-handed), and top to bottom (for gravity). We apply these 
rules in inter-frame stroke ordering with . For a stroke 𝑠𝑡, the stroke 
𝑠𝑡+1 is defined as its neighbor (undrawn). The stroke priority is thereby 
determined as SP(𝑠𝑡, 𝑠𝑡+1) = 𝑆(𝑠𝑡, 𝑠𝑡+1)+𝑀(𝑠𝑡+1−𝑠𝑡), where  mentioned 
above denotes the possibility of merging, and  become the cost 
function for the movement of the strokes. The inter-frame optimization 
is based on the stroke selection of the graph. We adopt a simple BFS 
(Breadth-First Search) when building the graph from the skeleton map 
(Fig.  3) as an implementation, selecting the stroke 𝑠𝑡+1 with minimal SP
as the next stroke in a junction (other stroke are delayed), and update 
the current position for next selection, in line with human drawing 
habits. The validity of this ordering was verified in our user study 
(Experiment 2 in Section 4). To enhance the efficiency of the sorting 
process, the strokes are merged before BFS with the following topology 
criteria.

Topology optimization for stroke smoothness. Users will pre-
fer smoother strokes for aesthetics and merging sub-strokes. The two 
mergeable neighbor sub-strokes should have some overlap and no 
increase in topological complexity after merging. We first define a 
stroke as follows: given a line art consists of 𝑃 = {𝑠1, 𝑠2,… , 𝑠𝑘}, for 
a graph 𝐺𝑠𝑘 (𝑉 ,𝐸) built from a skeleton of a stroke 𝑠𝑘, if there are only 
two vertices with len(𝐺𝑠𝑘 .𝑉 ) = 2 and one edge with len(𝐺𝑠𝑘 .𝐸) = 1, 
we consider it as the simplest stroke; if len(𝐺𝑠𝑘 .𝑉 ) > 2 but it can 
be drawn in a single stroke and it does not intersect with the other 
simplest strokes, we call it a single connected component stroke. We 
consider that a line art can be decomposed into the simplest and 
single connected component strokes. Thus, our objective function 𝑡
for topology optimization is 
𝑡 = min

∑

𝑠∈𝑃
(len(𝐺𝑠.𝐸) + len(𝐺𝑠.𝑉 )

+ 1
∑

𝑒∈𝐸 len(𝐺𝑠.𝐸.𝑝𝑎𝑡ℎ)
)

(8)

To restore the original topology from complex line drawings, a topo-
logical simplification strategy is used—as shown in Fig.  8, we use a 
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Fig. 7. CNNV vs. CNNE for single stroke rendering of a line art (a). With the same short edge input (b) as a cue region, CNNE may not work (c). While CNNV (d) 
can better determine the direction of strokes. On the other hand (e), CNNE can get a complete stroke (green) when the input is a long edge path. As the input 
exceeds the size of our active window, we adaptively split the input (red segment) into two parts (orange and blue), whose results would be merged automatically 
as the complete green stroke. Note that the split segments have a small overlap in the red circle.
Fig. 8. Topology optimization. Given an input line art (a), sub-strokes (c) are 
generated from the graphs (b) and subsequently merged (highlighted in (d)) 
when they meet the criterion Eq. (9).

topological criterion to try to merge sub-strokes in the domain. The 
criterion of the merge test for any sub-stroke 𝑠𝑖 and 𝑠𝑗 sharing a junction 
node is: 
{

len(∪(𝐺𝑠𝑖 ⋅ 𝐺𝑠𝑗 ).𝑉 ) <= max(len(𝐺𝑠𝑖 .𝑉 ), len(𝐺𝑠𝑗 .𝑉 ))
len(∪(𝐺𝑠𝑖 ⋅ 𝐺𝑠𝑗 ).𝐸) <= max(len(𝐺𝑠𝑖 .𝑉 ), len(𝐺𝑠𝑗 .𝐸))

(9)

When the merge is successful, the path is automatically increased, 
so the third term of Eq.  (8) is implicit in the merge operation. Among 
the merged strokes, we give a higher stroke priority to strokes. At this 
point, we have completed the rendering of all the single strokes in the 
line drawing. Determined the shape of the strokes 𝑠 ∈ {𝑠1, 𝑠2,…} in the 
sub-problem 1.

4. Experiments

4.1. Dataset and settings

Dataset. To validate our method, we require high-quality line art 
along with its associated drawing processes as ground truth. While 
the QuickDraw [22] and Benchmark [28] datasets offer a variety 
of vector sketches, they do not include information on the drawing 
process. Other datasets, such as OpenSketch [29], SpeedTracer [30], 
and DifferSketching [31], provide sketches with both stroke paths 
and timestamps, but these primarily depict industrial components or 
common objects, which do not align with our research focus. Thus, 
we collect 182 pieces of clean and high-quality anime line arts from 
experienced artists, each annotated with stroke paths and timestamps 
for each point along the paths. Due to individual differences in brush 
strokes, we selected 2 artists with similar brush strokes by observa-
tion and took 13 of their drawings as our training data to maintain 
consistent stroke rendering in network learning, and the rest 169 as 
the test set T169. As our model is trained on stroke-level data, the 
output for each training step is a single stroke. And 13 artworks contain 
2920 artist-drawn strokes. Through augmentations such as random 
curve-to-arc replacement in Fig.  5, translation, rotation, and cropping, 
we generate tens of thousands of variations. Combined with Dropout 
layers in our network architecture and specialized loss functions, this 
approach effectively prevents overfitting during training. To verify 
that our dataset is more challenging (including varying-width strokes 
6 
and complex topology), we chose the same dataset of Deep Sketch 
Vectorization (DSV) [13] as a control test set T369 (369 line drawings 
with uniform and thin strokes).

Implementation details. All experiments were conducted on a 
Windows platform using an NVIDIA RTX 4090 GPU. In Eq.  (4), we set 
𝑉𝑡ℎ = 20 pixels. For training the stroke renderer, both input patches and 
output images were set to a resolution of 512 × 512 pixels. In Stage 
I, training was carried out over 15,100 iterations with a batch size of 
16, followed by a Stage II refinement phase comprising 500 iterations, 
maintaining the same batch size. Before Stage II, parameters learned by 
CNNV in Stage I were transferred to CNNE as the initialization for joint 
training. As the training data were randomly cropped from original line 
drawings, the term ‘‘iterations’’ more accurately describes the training 
process than ‘‘epochs’’. We used the Adam optimizer [32] with an initial 
learning rate of 0.001. A learning rate decay schedule was applied every 
1000 iterations with a decay factor of 𝛾 = 0.5. For data augmentation, 
the stroke replacement probability was set to 𝑝 = 0.5 in Stage I and 
𝑝 = 0.2 in Stage II. For optimization, we used 𝑀𝑡ℎ = 0.5 in Eq.  (7) 
for the global reference generated by the pre-trained diffusion model 
and 𝑀𝑡ℎ = 0.8 for ground truth frames in the following evaluation, and 
𝑀𝑡ℎ = 0.6 in hallucination removal, as we mentioned.

4.2. Evaluation

Benchmark. Our method is the first to address image-to-drawing-
process inversion for complex line arts (raster images), generating a 
stroke-by-stroke process. We select two relevant tasks with state-of-
the-art baselines that can yield similar results: vectorization — vir-
tual sketching (VS) [11], PolyVectorization (PV) [12], Keypoint-Driven 
PolyVector-Flow Vectorization (KPV) [33], DSV [13] and image-to-
painting-process generation — PaintTransformer (PT) [2] and Styl-
ized Neural Painting (SNP) [3] to evaluate reconstruction accuracy and 
image quality. The inputs for both relevant tasks and our approach 
are the same, raster images in 1024 × 1024. Because Fu et al. [9] 
attempted to solve an NP-hard problem when finding the Hamiltonian 
paths, this heuristic-based stroke-ordering method for vector strokes 
input is too time-consuming with hundreds of strokes and unsuitable 
for a fair comparison. Semantic-based image-to-painting methods [4,8] 
do not work because they cannot obtain semantic layers in line arts 
(reason (c) in Section 1).

As such, we evaluate our method in two dimensions: the recon-
struction quality of the results, and the human-likeness of the drawing 
process. We compare our method with different baselines as described 
below.

Reconstruction quality. The objective of this evaluation is to 
ascertain the degree of pixel-level similarity between the target line 
drawing image and the rendered output. We use Chamfer Distance 
(CD) and Intersection over Union (IoU) between the final reconstructed 
result and ground truth to measure whether the method can recover the 
input drawing. Fréchet inception distance (FID), compared with ground 
truth, peak signal-to-noise ratio (PSNR), and structural similarity index 
(SSIM), are used to measure the image generation quality. As shown 
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Fig. 9. Reconstruction details comparison. Our method reconstructs line arts 
with complex topologies more accurately. As our extraction method allows 
for variable width (Row 4) and differentiation of overlapping strokes (the two 
strokes in the upper right of Row 5), our reconstruction results are numerically 
superior to the SOTA vectorization method in Table  2.

in Table  2, our method can best recover the original input line art 
with a maximum IoU and minimum CD while maintaining the highest 
image quality output in both T169 and T369. All methods perform 
worse on T169 than on T369, suggesting that our dataset is indeed more 
challenging. As Fig.  9 shows, our stroke rendering results in complex 
topologies recovering the original line art better than other vectoriza-
tion methods, which is also consistent with the previous quantitative 
results. The probable reason that KPV’s SSIM is the highest comes from 
its low success rates — 59.17% for T169 and 82.00% for T369 (Table  3) 
— meaning that it can only handle relatively simple line drawings. The 
qualitative comparison results with image-to-painting-process methods 
(SNP, PT) and vectorization methods (DSV, PV, KPV, VS) are shown in 
Fig.  14. This indicates that quantitative performance and quantitative 
evaluation results are visually consistent.

As presented quantitatively through Successful Examples Count 
(SEC) metrics in Table  3, we attribute distinct failure mechanisms for 
each baseline method:

1. For DSV cases exhibiting low SEC, the predominant cause stems 
from unhandled stroke width variations encountered during processing 
of intricate line drawings—a condition that critically destabilizes its 
second-stage fine-tuning module per algorithmic specifications outlined 
originally by Yan et al. [13]. 

2. Regarding KPV’s suboptimal performance, systematic failures 
originate primarily in the preprocessing phase, where erroneous junc-
tion detections occur within high-complexity regions (e.g., red circles 
in Fig.  10).

Global human-likeness. To further substantiate that our proposed 
method (global PaintsUndo [5] reference images + local reordering) 
in Fig.  14 generates globally human-like strokes, we conducted a 
rigorous user study structured as follows: We recruited 30 participants 
to evaluate stroke generation quality through comparative analysis 
of animation sequences produced by six competing methods (ours, 
PT, SNP, VS, KPV, PV, DSV). Participants ranked outputs based on 
perceptual resemblance to human-drawn strokes using a curated set of 
7 
Fig. 10. Cause of KPV’s low SEC performance. For complex line drawings, un-
detected junctions during KPV’s preprocessing stage (indicated by red circles) 
cause cascading failures in vectorization optimization, resulting in suboptimal 
SVG outputs and low SEC.

Fig. 11. Global human-likeness ranking.

six complex line drawings exhibiting structural complexity (referenced 
in supplementary videos Comparison 1–3). Key findings demonstrate 
the efficacy of our approach: 

1. As quantified in Fig.  11, our method achieved superior ranking 
results against baseline approaches. 

2. Statistical significance was confirmed through: the 𝑝-value of 
ANOVA (Analysis of Variance, 3.49 × 10−49) and the one of Kruskal–
Wallis test (7.29×10−29), rejecting null hypotheses at 𝛼 = 0.05 threshold. 
Moreover, a pairwise two-tailed 𝑡-test (Table  1) revealed significant 
inter-method disparities, conclusively establishing optimal performance 
for complex line arts. 

Computational time. As shown in Table  3, our run times are 
competitive, albeit slower than those of VS, PT, and SNR. However, 
our reconstruction quality is superior. Meanwhile, we maintain a ren-
dering time below 0.3 s per stroke, allowing users to observe real-time, 
stroke-by-stroke rendering visualizations while awaiting results without 
noticeable delays.

Generalizability. As Fig.  12 shown, Beyond anime characters, our 
approach can be applied to various objects, such as (a) machinery 
(e.g., a motorcycle), (b) a botanical drawing (a flower), (c) complex 
architectural structures, and (d) a scene containing botanicals and an 
animal. 

Quality of the drawing process. Since our approach follows a 
human mechanical optimization strategy, three main factors influence 
whether the generated stroke order is human-like or not: (1) how well 
the generated drawing process matches the global reference, (2) how 
well the local drawing process follows common human drawing rules, 
and (3) how well the quality of each single stroke. We decompose the 
evaluation of these factors into the following experiments.

Experiment 1: To measure the similarity between our generated 
stroke order and the global reference (main factor 1), we calculated 
precision and recall between rendered images of the stroke sequence 
generated by us and the reference at each timestep, called per-frame 
precision (recall); As Fig.  15 shows, the per-frame precision between 
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Table 1
Pairwise two-sided 𝑡-test results (𝑝-values) for global human-likeness ranking.
 Ours VS PV DSV SNP PT  
 Ours – 2.69 × 10−12 3.80 × 10−05 2.83 × 10−21 4.83 × 10−26 5.26 × 10−23 
 VS 2.69 × 10−12 – 1.88 × 10−08 3.48 × 10−02 6.04 × 10−11 1.31 × 10−04 
 PV 3.80 × 10−05 1.88 × 10−08 – 1.12 × 10−16 2.86 × 10−23 3.87 × 10−19 
 DSV 2.83 × 10−21 3.48 × 10−02 1.12 × 10−16 – 3.73 × 10−09 2.04 × 10−02 
 SNP 4.83 × 10−26 6.04 × 10−11 2.86 × 10−23 3.73 × 10−09 – 1.84 × 10−05 
 PT 5.26 × 10−23 1.31 × 10−04 3.87 × 10−19 2.04 × 10−02 1.84 × 10−05 –  
Table 2
Quantitative comparisons. Results are presented in the 𝑋|𝑌  format, where X corresponds to the T169 dataset (Ours) and Y to the 
T369 dataset [28]. (CD: 10−6, IoU/SSIM: 10−2).
 Method CD ↓ IoU ↑ PSNR ↑ SSIM ↑ FID ↓  
 SNP 63.69 | 17.75 21.23 | 2.31 11.51 | 16.38 65.77 | 3.28 459.10 | 454.07 
 PT 37.62 | 15.24 7.86 | 2.31 12.31 | 15.99 1.44 | 1.67 158.68 | 249.14 
 PV 18.48 | 5.10 73.34 | 64.19 15.22 | 21.59 74.62 | 86.78 21.14 | 14.85  
 VS 19.27 | 5.62 72.22 | 64.72 15.29 | 21.68 74.60 | 86.76 17.77 | 16.53  
 KPV 29.96 | 4.39 51.34 | 69.31 14.45 | 22.70 77.41 | 87.12 56.51 | 16.32  
 DSV 37.03 | 4.93 49.25 | 65.65 13.97 | 21.84 74.32 | 86.69 59.97 | 14.83  
 Ours 0.87 | 0.22 98.79 | 98.69 28.08 | 46.06 74.69 | 86.82 2.28 | 1.59  
Fig. 12. Generalizability of our method across more diverse categories. The input line drawings on the left of (a) ∼ (d) are sourced from T369. Our method can 
be applied to (a) a motorcycle, (b) a flower, (c) architecture, and (d) a complex scene with an animal.
 

 

Table 3
Computation time and successful examples count (SEC).
 Method T169 T369

 SEC Time (s) SEC Time (s) 
 SNR 169 59.89 369 63.08  
 PT 169 14.33 369 11.29  
 PV 169 331.59 369 68.04  
 VS 169 55.48 369 20.62  
 KPV 100 717.05 302 252.86  
 DSV 153 179.94 363 163.51  
 Ours 169 50.53 369 35.83  

our process images and the final reference is always maintained at a
high level. And our per-frame recall increases gradually to 98.53% dur-
ing the drawing process, which indicates the stroke process generated
by our method can well mimic the reference drawing process.
8 
Experiment 2: We set the global reference the same and render 
the sequence of our segmented strokes (Ours), vectorized strokes by 
VS [11], and PV [12] for comparison of the generated local stroke 
order, and the humanlikeness of every single stroke. We select 9 
drawings from the training data and render 27 stroke sequences with 
three different sets of strokes. We invite 36 participants to rate each 
sequence on a likely scale from 1 to 5. The participants were students 
of higher education, and 34 of them were novices in drawing. They 
were presented with each stroke sequence in GIF format and asked to 
evaluate the segmentation results by rating the following statements on 
a scale of 1 to 5, where 1 indicates ‘‘strongly disagree’’ and 5 indicates 
‘‘strongly agree’’.

• I think that the drawing process depicted in the GIF above exhibits 
a human-like quality. (Main factor 2)

• I think that each single stroke depicted in the GIF above is of high 
quality. (Main factor 3)
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Fig. 13. Distribution of user ratings for the drawing process and stroke quality.

Table 4
ANOVA and Kruskal–Wallis test for the Ours, PV, and VS groups.
 ANOVA Kruskal–Wallis 
 Drawing process 5.42 × 10−4 4.29 × 10−4  
 Stroke quality 2.89 × 10−6 6.37 × 10−7  

Table 5
The 𝑝-values of two-tailed 𝑡-test between results by ours and PolyVectorization 
(PV) [12], and by ours and Virtual Sketching (VS) [11].
 Ours-PV Ours-VS  
 Drawing process 4.48 × 10−2 1.04 × 10−4 
 Stroke quality 3.04 × 10−3 9.47 × 10−7 

Note that our results here only adopted a 1-frame (the input line 
drawing) global reference. This means these stroke orders are following 
our inter-frame stroke ordering. This user experiment demonstrates the 
validity of our inter-frame stroke ordering, while confirmation of the 
validity of the global optimization is provided by Experiment 1 in the 
main text, which provides a qualitative and quantitative evaluation.

Results. The average scores in terms of local stroke order are 2.98, 
2.73, and 3.17 for PV, VS, and Ours, respectively. PV, VS, and Ours 
score 3.59, 3.41, and 3.84, respectively, for the quality of the single 
stroke.

The distribution of user ratings is visualized in Fig.  13. The stroke 
sequence generated by our approach achieves a slightly higher average 
score in the evaluation of the drawing process, suggesting superior 
local process reconstruction. Additionally, participants rated the quality 
of our strokes as the highest on average among the three methods, 
highlighting the capability of our approach to reconstruct individual 
strokes.

We conducted a hypothesis test between the distributions of user 
ratings, and the 𝑝-values are less than 0.005 between each pair. The 𝑝-
values of ANOVA and Kruskal–Wallis test are reported in Table  4, and 
these results support a significant difference between the three data 
groups. To determine which specific group pairs showed statistically 
significant differences in means, pairwise two-tailed hypothesis tests 
were performed. The 𝑝-values two-sided two-sample 𝑡-test are reported 
in Table  5. This implies a significant difference in scores between 
our method and the other method, and the null hypothesis that both 
average scores are the same can be rejected with a probability of (1−𝑝).

Participants recognize that the local stroke order generated by our 
method is more reasonable, while our rendered strokes are of higher 
9 
Fig. 14. Qualitative comparisons for global drawing process. Our method 
allows a good reconstruction from different moments (t=0.05, 0.1, 0.2, 0.4, 
0.8, 1.0) at the stroke level when the corresponding ground truth is used as 
a reference, and for the other methods, we show their original order at the 
corresponding moments. From top to bottom, they are ground truth (also our 
global reference), ours, PT, SNP, VS, KPV, PV, DSV.

quality. The results indicate that our inter-frame sorting algorithm and 
rendered strokes outperform the other two vectorization methods.

Limitations and future work. While user studies indicate our 
stroke order appears more human-like, and statistical analysis supports 
this observation, this does not imply universal adoption, particularly 
among experts. These individuals possess deeply personalized experi-
ences and refined drawing techniques developed over years of practice. 
Both PaintsUndo and our inter-frame ordering may not meet these 
artists’ expectations. Consequently, developing customized stroke or-
dering methods that adapt to experts’ individual habits based on our 
existing approach represents a promising future research direction. 
Another limitation is that our current method is only suitable for clean 
line arts without shading effects: when the stroke overlap becomes ex-
cessive, resulting in shaded regions (such as solid circles), the skeleton 
extraction algorithm we employ fails to derive reasonable cues in these 
areas. This often leads to reconstruction failures. Therefore, achiev-
ing reasonable guidance generation for regions with higher ambiguity 
caused by shading will constitute another direction for future work.

5. Conclusion

Our method successfully inverts the stroke-by-stroke drawing pro-
cess from a complex line art. Our stroke renderer and human me-
chanical optimization guarantee the high quality of a single stroke, 
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Fig. 15. Per-frame precision and recall along the normalized timestep 
(𝑡=1%–100%).

while global optimization is capable of reconstructing the keyframes 
of the drawing process with a relatively reasonable stroke order. Our 
method yields higher quality reconstructed strokes than the traditional 
SOTA vectorization method, and overcomes the problem of PaintsUndo 
having no stroke-by-stroke order and the hallucination frame genera-
tion. In addition, a user study has shown that our inter-frame stroke 
order mechanism has some soundness. As a limitation, our method may 
not deal with highly overlapped strokes (such as shading) well, which 
leaves it as future work. Because the evaluation of ‘‘human-like’’ and 
‘‘reasonable’’ stroke ordering is highly individualized, another future 
work could also investigate how to generate individually tailored stroke 
orders that can be better applied to teaching users how to draw.
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Table A.1
Network architecture. CBR is a Conv-BatchNorm-ReLU block. PCB is a 
PixelShuffle-Conv2d-BatchNorm block with a fixed upscale_factor=2. KS is the 
kernel size. The probability for Dropout layer is 20%.
 Layer KS Stride Padding Output channel size 
 Input 2 × H × W  
 CBR (9,9) 2 4 128 × 𝐻

2
 × 𝑊

2
 

 CBR (3,3) 1 1 128 × 𝐻
2
 × 𝑊

2
 

 CBR (3,3) 1 1 128 × 𝐻
2
 × 𝑊

2
 

 CBR (3,3) 1 1 128 × 𝐻
2
 × 𝑊

2
 

 CBR (3,3) 1 1 128 × 𝐻
2
 × 𝑊

2
 

 CBR (3,3) 2 1 256 × 𝐻
4
 × 𝑊

4
 

 CBR (3,3) 1 1 256 × 𝐻
4
 × 𝑊

4
 

 CBR (3,3) 1 1 256 × 𝐻
4
 × 𝑊

4
 

 CBR (3,3) 1 1 256 × 𝐻
4
 × 𝑊

4
 

 CBR (3,3) 2 1 256 × 𝐻
4
 × 𝑊

4
 

 CBR (3,3) 1 1 512 × 𝐻
8
 × 𝑊

8
 

 CBR (3,3) 1 1 512 × 𝐻
8
 × 𝑊

8
 

 CBR (3,3) 1 1 256 × 𝐻
4
 × 𝑊

4
 

 CBR (3,3) 1 1 256 × 𝐻
4
 × 𝑊

4
 

 CBR (3,3) 1 1 256 × 𝐻
4
 × 𝑊

4
 

 CBR (3,3) 1 1 256 × 𝐻
4
 × 𝑊

4
 

 CBR (3,3) 1 1 256 × 𝐻
4
 × 𝑊

4
 

 CBR (3,3) 1 1 256 × 𝐻
4
 × 𝑊

4
 

 Dropout  
 PCB (3,3) 1 1 64 × 𝐻

4
 × 𝑊

4
 

 PCB (3,3) 1 1 16 × 𝐻
2
 × 𝑊

2
 

 PCB (3,3) 1 1 4 × H × W  
 Sigmoid 1 × H × W  

Appendix A. Our network architecture

See Table  A.1.

Appendix B. Supplementary data

Supplementary material related to this article can be found online 
at https://doi.org/10.1016/j.cag.2025.104365.

Data availability

Data will be made available on request.
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