
Computers & Graphics 132 (2025) 104365

A
0

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Special Section on CAD/Graphics 2025

LineDrawer: Stroke-level process reconstruction of complex line art based on

human perception
Zhengyu Huang a , Zhongyue Guan a, Zeyu Wang a,b ,∗

a The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, 511453, China
b The Hong Kong University of Science and Technology, 999077, Hong Kong, China

A R T I C L E I N F O

Keywords:
Line art
Stroke-level reconstruction
Drawing process inversion
Deep learning

 A B S T R A C T

Line art is a fundamental yet powerful form of artistic expression. In this paper, we introduce a novel task
aimed at enhancing novice understanding of reproducibility in line drawings: reconstructing the stroke-by-
stroke drawing process from complex line art. This task poses substantial challenges, as it requires resolving
stroke ambiguity, variations in stroke thickness, and stroke overlapping. To address these issues, we propose
a hierarchical framework that emulates human drawing behavior, comprising three stages: (1) high-level
generation of global semantic stroke order, (2) mid-level optimization of human drawing mechanics, and (3)
low-level perceptual stroke rendering. Drawing inspiration from the human tendency to conceptualize the
overall structure before refining local details, we first extract keyframes of the drawing sequence that guide
global ordering using a diffusion-based model. Simultaneously, based on the assumption that humans can
infer strokes from any cue point in a line drawing, we train a stroke renderer to extract variable-width sub-
strokes at the pixel level. Lastly, we formulate a set of equations to model human drawing dynamics, enabling
more detailed inference of stroke composition and sequencing within the identified keyframes. This framework
effectively integrates high-level semantic understanding with low-level stroke reconstruction, facilitating
stroke-level process recovery in complex line drawings. Extensive experiments and user studies demonstrate
that our method produces relatively natural and coherent drawing process animations for high-quality line art.
1. Introduction

Artistic line drawing, or line art, is a fundamental form of visual
expression in which monochromatic strokes — varying in thickness,
curvature, and density — delineate contours, structures, and spatial
relationships within a composition. As a highly abstracted representa-
tion of visual information, the creation of line art inherently reflects
human cognitive strategies for decomposing complex subjects into
hierarchical geometric primitives. This intrinsic connection positions
the reconstruction of the line art drawing process as an interdisciplinary
challenge at the intersection of computer graphics and the study of
perceptual mechanisms in artistic cognition. In this paper, we focus on
‘‘complex’’ line arts, defined as high-resolution images characterized by
intricate stroke topology and a clean background, without the influence
of real-world lighting or shading. A typical example is the line art
found in digital illustrations. Despite their apparent simplicity, such
drawings are difficult for novices to reproduce. Even when tasked
with replicating a given drawing in this style, novices often struggle
to determine where to begin, highlighting the need for tools that can
reveal and guide the underlying drawing process.

∗ Corresponding author.
E-mail address: zeyuwang@ust.hk (Z. Wang).

Recent advancements in artificial intelligence have shown promis-
ing results in reconstructing the drawing process for paintings from
real-world images using stroke-based rendering approaches [1–4] or
pixel-based simulation techniques [5–8]. When the input is a line
drawing, prior work has primarily focused on stroke ordering [9] after
a vectorization process [10–13]. However, these methods encounter
critical limitations when applied to ‘‘complex line art’’ due to three
intrinsic challenges: (1) The explicit nature of strokes, such as sharp
tails and non-uniform widths, necessitates pixel-precise decomposition
rather than probabilistic stroke approximation using parameterized
brushes [1–3] or fixed-width vector representations [10,12,13]. (2) The
presence of overlapping strokes introduces exponential combinatorial
ambiguities in topological ordering [9,14]. (3) The absence of color and
texture information heightens reliance on geometric reasoning to infer
plausible temporal sequences from static inputs [4,8], a challenge that
existing methods struggle to address effectively.

Motivated by these gaps, we introduce LineDrawer, a framework
that directly infers stroke sequences from raster images of complex line
art. In this context, a stroke refers to a continuous line with variable
https://doi.org/10.1016/j.cag.2025.104365
Received 27 June 2025; Received in revised form 27 July 2025; Accepted 29 July
vailable online 22 August 2025
097-8493/© 2025 Elsevier Ltd. All rights are reserved, including those for text and
2025

data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/cag
https://www.elsevier.com/locate/cag
https://orcid.org/0000-0002-4279-3008
https://orcid.org/0000-0001-5374-6330
mailto:zeyuwang@ust.hk
https://doi.org/10.1016/j.cag.2025.104365
https://doi.org/10.1016/j.cag.2025.104365
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2025.104365&domain=pdf

Z. Huang et al. Computers & Graphics 132 (2025) 104365
Fig. 1. Line art drawing process reconstruction. Given a line art, our method reconstructs the stroke-by-stroke drawing process. The first column of each line
shows the input drawing, followed by keyframes showing the reconstructed sequence of strokes in color. The varying colors indicate the segmentation mask
corresponding to each individual stroke. The global reference in the lower right corner of each keyframe is a raster image generated from a diffusion model and
does not contain any stroke information. Visually, these global references match the corresponding keyframes in our stroke-by-stroke reconstruction process.
].
thickness drawn by a pen. Inspired by the natural drawing behavior
of artists, we propose a three-level hierarchical approach that models
(1) high-level semantic intent, (2) mid-level drawing heuristics, and
(3) low-level stroke perception. In the first stage, we employ a pre-
trained diffusion model, PaintsUndo [5], to generate a semantic-level
drawing sequence, which serves as implicit guidance for global stroke
ordering. In the second stage, a neural network trained to simulate
human perceptual inference maps cue regions to variable-width local
sub-strokes. Finally, the third stage introduces a habitual function that
captures human drawing mechanics to merge local sub-strokes and
optimize a globally coherent stroke sequence.

In summary, our contributions are as follows:

• We introduce a novel sub-stroke perceptual rendering approach
that extracts corresponding strokes from complex line art using
a localized cue-aware mechanism, simulating human cognitive
perception of strokes.

• We propose a human mechanical optimization strategy to recon-
struct the stroke-level drawing process for complex line arts, effec-
tively connect both high-level semantics and low-level stroke de-
tails, and overcome the hallucination in the original PaintsUndo [5

• Through experiments and user studies, we demonstrate that our
method generates faithful, artist-like drawing sequences for com-
plex line arts, surpassing existing approaches in accuracy and
coherence.

2. Related work

2.1. Drawing process reconstruction

‘‘Drawing process’’ is a general concept involving various media
and different drawing stages. As for process reconstruction of stylized
drawings, we refer readers to [1–4,6–8] for a more thorough review.
Here we mainly discuss the more related literature on line drawings,
commonly involved in the draft stage of all kinds of drawings using a
pen or a stylus.

Early work can be traced back to a simpler problem setting - how to
generate a reasonable drawing order given a sequence of strokes [9,15].
Fu et al. [9] design the computational procedures to mimic the key
principles of drawing order from drawing cognition. Liu et al. [15]
further divide the drawing process into different phases and propose
entropy-based stroke selection and ordering. Their limitation lies in
the poor generalization ability due to the heuristic algorithm and long
calculation time, given complex line drawings with several hundred
strokes as input.

A later stream of work attempts to sequentially construct stroke-
based drawings of common objects [16–19]. Ha et al. [16] model sketch
drawings using recurrent neural networks, which enables interesting
2
applications such as ending prediction of incomplete drawings and
conditional reconstruction. However, an obvious visual bias can be
observed comparing the user input drawing and the reconstructed one.
Based on the sequential generative model by [16], Song et al. [17]
propose a stroke-level photo-to-sketch synthesis model. Their meth-
ods can only generate abstract symbolic drawings requiring separate
training for distinct object categories, which are also limited by the
complexity of the drawing and the generalization ability. Methods from
Huang et al. [18,19] can generate complete portraits that partially
match incomplete sketches through either a two-stage [18] or stroke-
by-stroke [19] drawing process. However, their temporal sequence of
generated results during the drawing process exhibits inconsistency.

Recently, PaintsUndo [5] attempts to model the drawing process
of anime drawings. Different from previous work targeting at placing
strokes by a single media, PaintsUndo mimics all kinds of human behav-
iors during the drawing process, including sketching, inking, coloring,
shading, transforming, layer operation, and other decision-making pro-
cesses. We extract the sketching stage prediction from PaintsUndo as
the global reference for our process reconstruction pipeline. However,
it cannot generate the drawing process stroke by stroke, and the gen-
erated frames are often inconsistent, caused by hallucination. Thus, we
applied a global optimization to eliminate these negative effects. Fig. 2
gives 15 frames of global reference for each line art corresponding to
Fig. 1, where we successfully removed the hallucination frames.

2.2. Stroke extraction

Previous stroke segmentation methods [20,21] can effectively seg-
ment symbolic drawings with few strokes in QuickDraw [22]. Kim
et al. [20] employ a deep neural network to detect pixel-pair simi-
larity and segment strokes from the original raster line drawing by
labeling all foreground pixels based on this similarity. The process-
ing time of this method increases exponentially with the number of
foreground pixels, which makes it impractical to scale up to high-
resolution line drawings. Ito et al. [21] further enhance the efficiency
of the aforementioned method, though this improvement comes at the
cost of reduced segmentation accuracy. Despite these efforts, handling
more complex topologies remains challenging for them when dealing
with high-resolution drawings. Due to the small kernel sizes in their
proposed networks, they struggle with complex drawings containing
significantly more strokes. Our method addresses this limitation by em-
ploying an active window size of 512 × 512, enabling the segmentation
of longer strokes across images of arbitrary size.

Another workflow that can extract paths of strokes from a given
line drawing is often known as vectorization. Noris et al. [23] extract
stroke topology and centerlines using image gradients alone, which
provides insufficient local information, resulting in unreliable vector

Z. Huang et al. Computers & Graphics 132 (2025) 104365
Fig. 2. The hallucination of PaintsUndo [5] may not occur (Row 1), may occur in intermediate frames (Row 2), or only in the first few frames (Row 3). Our
method discriminates the hallucination frames (red box) and uses the rest of the keyframes as global references.
Fig. 3. Given an input line art (a), our method consists of three intermediate modules that simulate human drawing behavior: (1) a diffusion prior used to obtain
a global reference sequence (d) for guidance; (2) a stroke renderer trained to generate sub-strokes (c); and (3) human mechanical optimization, encompassing
topology optimization, hallucination removal, and process generation.
strokes. Guo et al. [24] propose a two-phase approach for local and
global topology reconstruction. Bessmeltsev and Solomon [10] effec-
tively vectorize simple line drawings using a graph-based approach
with PolyVector fields. Yet, their method relies on pre-defined X and
T-junctions, limiting its ability to handle more complex topology struc-
tures. Mo et al. [11] introduce a dynamic window to iteratively search
and vectorize undrawn areas. Due to their window searching strategy,
their method tends to generate short, consecutive strokes and may
miss details in highly complex drawings. Puhachov et al. [12] use key-
point detection to guide graph construction and then optimize it with
PolyVector Field. However, its success depends heavily on keypoint
detection accuracy. Yan et al. [13] adopt a pairwise training strategy,
mapping one line drawing to one single ground truth vector drawing.
We doubt the existence of only one ‘‘correct’’ topology in ambiguous
cases, as there may be several reasonable solutions. In contrast, we
adopt a cue-wise stroke extraction strategy to encourage reasonable
stroke orientation given a query region, therefore not limiting to finding
the only ‘‘correct’’ stroke segmentation when facing ambiguity. In this
case, our method can handle line drawings with complex topologies
more flexibly.

3. Method

3.1. Problem formulation

Given a drawing process consisting of 𝑛 strokes 𝑃 =
{𝑠1, 𝑠2,… , 𝑠𝑘,… , 𝑠𝑛}, its final drawing result is 𝐼 = Draw(𝑃), where 𝑠𝑘
is the 𝑘th stroke on the rendered image 𝐼 , function Draw(⋅) generates
the stroke-by-stroke drawing process 𝑃 . Our goal is to find the inverse
function Draw−1 that predicts the drawing process 𝑃 ′, where 𝑃 ′ =
Draw−1(𝐼), 𝑃 ′ = {𝑠′1, 𝑠

′
2,… , 𝑠′𝑛}. To minimize the difference between the

original drawing process 𝑃 and the predicted 𝑃 ′, we have the objective
function  :
 = min(𝑃 , 𝑃 ′) (1)
3
Based on the general drawing principles - from macro to detail, we
divide the factors of the loss function  into the following two: (1)
overall stroke order, and (2) shape of each single stroke. (1) and (2)
correspond to the global and local information of the overall process
reconstruction, respectively. Consequently, we decompose the problem
into two relatively independent sub-problems, resulting in a smaller
solution space.

Sub-problem (1): stroke order prediction. Given the disordered
strokes, we introduce a reference sequence of the drawing process that
imitates how an artist draws. A reference sequence here is a series of
snapshots arranged chronologically during the drawing process.

Denote the timestamp of the drawing process as 𝑡 ∈ {0, 1,… , 𝑁},
the global reference at moment 𝑡 as 𝑅𝑡, and the newly generated stroke
at moment 𝑡 as 𝑠𝑡. The global reference at moment 𝑡 should be a sum of
the generated strokes from time step 0 to 𝑡, that is 𝑅𝑡 = 𝛴𝑡

𝑘=0 Draw(𝑠𝑘).
The global reference between moment 𝑖 and moment 𝑗 should satisfy
𝑅𝑗 − 𝑅𝑖 = 𝛴𝑗

𝑘=𝑖 Draw(𝑠𝑘). Therefore, the objective function of the
sub-problem (1) is simplified as

1 = 𝑔(𝑅𝑗 − 𝑅𝑖,
𝑗
∑

𝑘=𝑖
Draw(𝑠𝑘)) (2)

where 𝑔 is the general loss function for sub-problem (1).
The introduction of global reference sequences simplifies the orig-

inal long-term prediction problem into a short-term layer matching
problem between several drawing sequences.

Sub-problem (2): stroke rendering. Given the stroke order in the
generated drawing process 𝑃 ′, we can focus on rendering each single
stroke 𝑠𝑘 by minimizing the loss 2 between the ground-truth strokes
𝑠𝑘 and predicted strokes 𝑠′𝑘:

2 =
∑

𝑘∈{0,1,…,𝑁}
𝑐 (𝑠𝑘, 𝑠′𝑘) (3)

where 𝑐 is the loss function for local optimization. Since sub-problems
1 and 2 interact with each other, we introduce an human drawing

Z. Huang et al. Computers & Graphics 132 (2025) 104365
Fig. 4. Ablation study of our proposed loss function. The results demonstrate that using our loss produces outputs most similar to the ground truth stroke (green)
when provided with the same input (red point and black line drawing). By the 1500th training iteration, CNNV optimized with our loss function begins to
converge, whereas Dice fails to capture the stroke shape, and MSE tends to output only the background image.
mechanical optimization, which is further decomposed into drawing
process generation and a topology optimization.

3.2. Overview

Our pipeline is shown in Fig. 3. We generate local strokes and
the global reference sequence of the input line drawings separately,
and then further combine the quality of the drawings through human
mechanical optimization.

3.3. Local stroke rendering network

Since the drawing process prediction is the inverse process of draw-
ing creation, we start from sub-problem (2) single-stroke generation.
To solve Eq. (3), we construct the graph 𝐺(𝑉 ,𝐸) based on a skeleton
map of the input line art, where 𝑉 includes the stroke endpoints and
their intersections, 𝐸 includes all paths between two adjacent vertices.
For each path 𝑒 ∈ 𝐸, there is a geometrically corresponding stroke 𝑠.
And it is allowed that more than one 𝑒 pairs an identical stroke. In
this case, the part corresponding to e is considered as a sub-stroke.
Thus, we transform the problem to train a sub-stroke renderer CNN
such that 2 = 𝛴(CNN𝐸 (𝑒), 𝑠) Since there may be short paths whose
len(𝑒.path) ≤ 𝑉𝑡ℎ threshold or generating pseudo-paths on the intricate
line arts of the strokes, we further relax the correspondence from 𝑒 to
the associated point 𝑣𝑒 = Sampling(𝑒) and use this to train a sub-stroke
renderer CNN such that predicted strokes 𝑠′ = CNN𝐸 (𝑒) to make the
results more stable. If 𝑣 is belong to stroke 𝑠𝑘, then there exists a sub-
stroke 𝑠𝑠𝑣 = CNN𝑉 (𝑣) ∈ 𝑠𝑘, and 𝑠𝑘 = ∪𝑠𝑠𝑣. So our optimization objective
is
2 = minc𝑠𝑘,Merge𝑒∈𝐸 (CNNV(Sampling(𝑒))

if (len(𝑒.𝑝𝑎𝑡ℎ) ≤ 𝑉𝑡ℎ) else ∶ CNNE(𝑒))
(4)

Network architecture. Our model comprises two identical encoder–
decoder pairs based on a fully convolutional network (CNN) architec-
ture, as depicted in Fig. 3. The first CNN, referred to as CNN𝑉 , takes
as input a point positioned on a stroke and outputs its correspond-
ing stroke. Following CNN𝑉 , the second CNN, denoted as CNN𝐸 , is
designed to render the full strokes from edge 𝑒.

Inspired by ResNet [25] and Smart Inker [26], each CNN in our
framework comprises 24 layers, primarily using Conv-BatchNorm-ReLU
blocks. The network downsamples the input three times using convolu-
tions and restores it to its original size through sub-pixel convolutions,
allowing the input image size to be any integer multiple of 8. To avoid
the error-prone nature of zero-padding, the first layer employs a 9 × 9
pixel kernel with 4 × 4 reflective padding. Both our CNN𝑉 and CNN𝐸
share the same architecture as Table A.1 shown in Appendix A.

Loss function. To specify the loss function 𝐿𝑐 in Eq. (3), we must
account for the imbalance between the output rendering strokes and the
background, where negative samples (background) typically dominate.
4
Fig. 5. Data augmentation. We show the stroke replacement with different
probabilities. Either the original stroke or the replaced stroke can be selected.
As the replacement probability p increases, the line art gradually loses the
original information. In addition, the shape of the red input point has a certain
randomness in the drawing.

To address this, we adopt a loss function that combines Dice loss [27]
with Mean Squared Error (MSE) loss 𝐿2:

𝑐 = 𝛼 ⋅ 𝐿2(𝑠𝑖,𝜃(𝐼𝑐 , 𝑥𝑖))

+(1 − 𝛼)𝐷𝑖𝑐𝑒(𝑠𝑖,𝜃(𝐼𝑐 , 𝑥𝑖))
(5)

where 𝛼 = 0.09. The notations are consistent with those in Eq. (3). MSE
is a natural choice as it encourages the strokes to maintain their original
shapes, while Dice loss is advantageous due to its robustness against
class imbalance. It effectively handles the disparity in the number of
positive and negative samples, allowing the model to focus more on ac-
curately rendering the smaller strokes. Otherwise, due to the imbalance
of positive and negative samples, training with MSE or DICE loss alone
tends to be unstable, ultimately leading to the generation of pure white
images regardless of the input prompts. We illustrate the effectiveness
of our proposed loss function in Fig. 4. Given the imbalanced ratio
of positive to negative labels in the output, relying solely on MSE
disproportionately emphasizes negative samples, resulting in outputs
consisting exclusively of background images.

Data synthesis. To validate the stroke order and learn the stroke
rendering of hand-drawn high-quality line arts, we collected data as
described in Section 4. To stabilize training and avoid overfitting,
we add random stroke replacement in addition to random rotation,
inversion, and scaling, which is used to correspond to various complex
topologies. As shown in Fig. 5, we replace the original strokes with
a certain probability 𝑝 to the arcs with the same starting and ending
points, which can increase the diversity of strokes and enable us to
get the stroke renderer in a limited number of samples and realize the
few-shot learning of CNNV and CNNE.

Two-stage training. As Fig. 6 shows, in Stage I, we randomly crop
a patch from the original line art as the active window, select a stroke
from it, and randomly generate a small dot (red). We then generate
a mask for this small red dot and concatenate it with the cropped
original line art to create a two-channel image as input. Due to the
local connectivity of CNN, CNNV with one point input has difficulty in
corresponding to a long stroke (Fig. 7).

Z. Huang et al. Computers & Graphics 132 (2025) 104365
Fig. 6. Two-stage stroke renderer training. Our input for both CNNs is a 2-
channel image. Once a stroke (green) is selected, we only need to sample
a random query region (red) on this stroke for CNNV in Stage I, and its
output is the input of CNNE. Note that before Stage II starts, CNNV copies
the parameters to CNNE as initialization, and that both CNNs are trained at
Stage II.

After training, we obtain two CNNs as shown in Fig. 6. They are
used for different types of inputs, and we show this separately in
Fig. 7: CNNV can render strokes for the intersection part of strokes,
but the results are usually localized; CNNE is effective for rendering
long strokes. In the practical inference, we chose an active window of
512 × 512 to improve the computing speed. To render strokes that may
exceed the size of the window, we split the input (𝑒.path) of CNNE
into 𝐾 line segments (according to len(𝑒.path)), with partial sharing
between the successive segments, and merge the final result into a
stroke.

3.4. High-level stroke order generation

Typically, the best way to obtain a global painting process is
to record the entire process and then generate snapshots. However,
such data is not easy to collect and obtain, so we used the method
PaintsUndo [5] to predict a reasonable sequence of painting processes
from the diffusion model. Since we have already obtained a sequence
global reference {𝑅𝑖} of the drawing process from the time 𝑖 from 0 to
𝑇 time, we convert the objective of Eq. (2) into

1 =
𝑇
∑

𝑖=0
𝑔(𝑅𝑖,

𝑖
∑

𝑘=0
Draw(𝑠𝑘)) (6)

This means that each sub-stroke should belong to the frame in which
it first appeared. In the actual implementation, all the sub-strokes go
frame by frame along the chronological order to find the best match.
For 𝑅𝑖 and a certain sub-stroke 𝑠𝑘 at time 𝑖, our determination function
 is

 =
Area(𝑅𝑖

⋂

Draw(𝑠𝑘))
Area(Draw(𝑠𝑘))

(7)

where function Area(⋅) calculates the pixel-level area of its input raster
image, and we determine which frame a stroke should belong to by
setting the hyperparameter 𝑀𝑡ℎ. This method eliminates the hallucina-
tions from the reference.

Hallucination removal. Our stroke-level rendering module oper-
ates as a self-contained system that functions without requiring any
global reference image. This architecture endows our method with
intrinsic hallucination detection capabilities: whenever PaintsUndo’s
prediction sequence exhibits either (Rule 1) dissimilarity to the original
5
sketch in overlapping regions or (Rule 2) temporal discontinuity with
the previous frame, we categorize such a frame as a hallucination.

To simplify and speed up the calculation, we use Eq. (7) to pre-
calculate the neighboring frames as well as the current frame between
the input frames to determine whether the current frame is a hallucina-
tion image or not, which implements the hallucination removal in Figs.
2 and 3. In this step, we use a relatively strict condition for distinction
and the corresponding rules are:

• Rule 1. Hyperparameter 𝑀𝑡ℎ = 0.6.
• Rule 2. The number of pixels in the previous frame is greater than
the next (continuity law)

3.5. Human mechanical optimization

So far, we have obtained global references for high-level semantics
and sub-strokes for low-level semantics. Our next task is to perform an
optimization that mimics the artist’s behavior and synthesizes a mean-
ingful order. In the context of line art, the primary factor influencing
stroke order is user habit, which is unique to each user. This assertion
is corroborated by the findings of Qiu et al. [14], which demonstrate
that even when stroke orders from professional artists, 35.94% of
participants perceive them as computer-generated rather than hand-
drawn. Nevertheless, the remaining 64.06% demonstrate the existence
of similarities. Consequently, by observing the artists’ drawing behavior
during the data collection process, we simplified the primary factors to
two: the smoothness of the line strokes  and the mechanics of the
drawing .

Mechanics of the drawing. Artists use strategies that are more
comfortable for themselves, including drawing outlines before details,
fewer hand movements when drawing the same object, from left to
right (if right-handed), and top to bottom (for gravity). We apply these
rules in inter-frame stroke ordering with . For a stroke 𝑠𝑡, the stroke
𝑠𝑡+1 is defined as its neighbor (undrawn). The stroke priority is thereby
determined as SP(𝑠𝑡, 𝑠𝑡+1) = 𝑆(𝑠𝑡, 𝑠𝑡+1)+𝑀(𝑠𝑡+1−𝑠𝑡), where  mentioned
above denotes the possibility of merging, and  become the cost
function for the movement of the strokes. The inter-frame optimization
is based on the stroke selection of the graph. We adopt a simple BFS
(Breadth-First Search) when building the graph from the skeleton map
(Fig. 3) as an implementation, selecting the stroke 𝑠𝑡+1 with minimal SP
as the next stroke in a junction (other stroke are delayed), and update
the current position for next selection, in line with human drawing
habits. The validity of this ordering was verified in our user study
(Experiment 2 in Section 4). To enhance the efficiency of the sorting
process, the strokes are merged before BFS with the following topology
criteria.

Topology optimization for stroke smoothness. Users will pre-
fer smoother strokes for aesthetics and merging sub-strokes. The two
mergeable neighbor sub-strokes should have some overlap and no
increase in topological complexity after merging. We first define a
stroke as follows: given a line art consists of 𝑃 = {𝑠1, 𝑠2,… , 𝑠𝑘}, for
a graph 𝐺𝑠𝑘 (𝑉 ,𝐸) built from a skeleton of a stroke 𝑠𝑘, if there are only
two vertices with len(𝐺𝑠𝑘 .𝑉) = 2 and one edge with len(𝐺𝑠𝑘 .𝐸) = 1,
we consider it as the simplest stroke; if len(𝐺𝑠𝑘 .𝑉) > 2 but it can
be drawn in a single stroke and it does not intersect with the other
simplest strokes, we call it a single connected component stroke. We
consider that a line art can be decomposed into the simplest and
single connected component strokes. Thus, our objective function 𝑡
for topology optimization is
𝑡 = min

∑

𝑠∈𝑃
(len(𝐺𝑠.𝐸) + len(𝐺𝑠.𝑉)

+ 1
∑

𝑒∈𝐸 len(𝐺𝑠.𝐸.𝑝𝑎𝑡ℎ)
)

(8)

To restore the original topology from complex line drawings, a topo-
logical simplification strategy is used—as shown in Fig. 8, we use a

Z. Huang et al. Computers & Graphics 132 (2025) 104365
Fig. 7. CNNV vs. CNNE for single stroke rendering of a line art (a). With the same short edge input (b) as a cue region, CNNE may not work (c). While CNNV (d)
can better determine the direction of strokes. On the other hand (e), CNNE can get a complete stroke (green) when the input is a long edge path. As the input
exceeds the size of our active window, we adaptively split the input (red segment) into two parts (orange and blue), whose results would be merged automatically
as the complete green stroke. Note that the split segments have a small overlap in the red circle.
Fig. 8. Topology optimization. Given an input line art (a), sub-strokes (c) are
generated from the graphs (b) and subsequently merged (highlighted in (d))
when they meet the criterion Eq. (9).

topological criterion to try to merge sub-strokes in the domain. The
criterion of the merge test for any sub-stroke 𝑠𝑖 and 𝑠𝑗 sharing a junction
node is:
{

len(∪(𝐺𝑠𝑖 ⋅ 𝐺𝑠𝑗).𝑉) <= max(len(𝐺𝑠𝑖 .𝑉), len(𝐺𝑠𝑗 .𝑉))
len(∪(𝐺𝑠𝑖 ⋅ 𝐺𝑠𝑗).𝐸) <= max(len(𝐺𝑠𝑖 .𝑉), len(𝐺𝑠𝑗 .𝐸))

(9)

When the merge is successful, the path is automatically increased,
so the third term of Eq. (8) is implicit in the merge operation. Among
the merged strokes, we give a higher stroke priority to strokes. At this
point, we have completed the rendering of all the single strokes in the
line drawing. Determined the shape of the strokes 𝑠 ∈ {𝑠1, 𝑠2,…} in the
sub-problem 1.

4. Experiments

4.1. Dataset and settings

Dataset. To validate our method, we require high-quality line art
along with its associated drawing processes as ground truth. While
the QuickDraw [22] and Benchmark [28] datasets offer a variety
of vector sketches, they do not include information on the drawing
process. Other datasets, such as OpenSketch [29], SpeedTracer [30],
and DifferSketching [31], provide sketches with both stroke paths
and timestamps, but these primarily depict industrial components or
common objects, which do not align with our research focus. Thus,
we collect 182 pieces of clean and high-quality anime line arts from
experienced artists, each annotated with stroke paths and timestamps
for each point along the paths. Due to individual differences in brush
strokes, we selected 2 artists with similar brush strokes by observa-
tion and took 13 of their drawings as our training data to maintain
consistent stroke rendering in network learning, and the rest 169 as
the test set T169. As our model is trained on stroke-level data, the
output for each training step is a single stroke. And 13 artworks contain
2920 artist-drawn strokes. Through augmentations such as random
curve-to-arc replacement in Fig. 5, translation, rotation, and cropping,
we generate tens of thousands of variations. Combined with Dropout
layers in our network architecture and specialized loss functions, this
approach effectively prevents overfitting during training. To verify
that our dataset is more challenging (including varying-width strokes
6
and complex topology), we chose the same dataset of Deep Sketch
Vectorization (DSV) [13] as a control test set T369 (369 line drawings
with uniform and thin strokes).

Implementation details. All experiments were conducted on a
Windows platform using an NVIDIA RTX 4090 GPU. In Eq. (4), we set
𝑉𝑡ℎ = 20 pixels. For training the stroke renderer, both input patches and
output images were set to a resolution of 512 × 512 pixels. In Stage
I, training was carried out over 15,100 iterations with a batch size of
16, followed by a Stage II refinement phase comprising 500 iterations,
maintaining the same batch size. Before Stage II, parameters learned by
CNNV in Stage I were transferred to CNNE as the initialization for joint
training. As the training data were randomly cropped from original line
drawings, the term ‘‘iterations’’ more accurately describes the training
process than ‘‘epochs’’. We used the Adam optimizer [32] with an initial
learning rate of 0.001. A learning rate decay schedule was applied every
1000 iterations with a decay factor of 𝛾 = 0.5. For data augmentation,
the stroke replacement probability was set to 𝑝 = 0.5 in Stage I and
𝑝 = 0.2 in Stage II. For optimization, we used 𝑀𝑡ℎ = 0.5 in Eq. (7)
for the global reference generated by the pre-trained diffusion model
and 𝑀𝑡ℎ = 0.8 for ground truth frames in the following evaluation, and
𝑀𝑡ℎ = 0.6 in hallucination removal, as we mentioned.

4.2. Evaluation

Benchmark. Our method is the first to address image-to-drawing-
process inversion for complex line arts (raster images), generating a
stroke-by-stroke process. We select two relevant tasks with state-of-
the-art baselines that can yield similar results: vectorization — vir-
tual sketching (VS) [11], PolyVectorization (PV) [12], Keypoint-Driven
PolyVector-Flow Vectorization (KPV) [33], DSV [13] and image-to-
painting-process generation — PaintTransformer (PT) [2] and Styl-
ized Neural Painting (SNP) [3] to evaluate reconstruction accuracy and
image quality. The inputs for both relevant tasks and our approach
are the same, raster images in 1024 × 1024. Because Fu et al. [9]
attempted to solve an NP-hard problem when finding the Hamiltonian
paths, this heuristic-based stroke-ordering method for vector strokes
input is too time-consuming with hundreds of strokes and unsuitable
for a fair comparison. Semantic-based image-to-painting methods [4,8]
do not work because they cannot obtain semantic layers in line arts
(reason (c) in Section 1).

As such, we evaluate our method in two dimensions: the recon-
struction quality of the results, and the human-likeness of the drawing
process. We compare our method with different baselines as described
below.

Reconstruction quality. The objective of this evaluation is to
ascertain the degree of pixel-level similarity between the target line
drawing image and the rendered output. We use Chamfer Distance
(CD) and Intersection over Union (IoU) between the final reconstructed
result and ground truth to measure whether the method can recover the
input drawing. Fréchet inception distance (FID), compared with ground
truth, peak signal-to-noise ratio (PSNR), and structural similarity index
(SSIM), are used to measure the image generation quality. As shown

Z. Huang et al. Computers & Graphics 132 (2025) 104365
Fig. 9. Reconstruction details comparison. Our method reconstructs line arts
with complex topologies more accurately. As our extraction method allows
for variable width (Row 4) and differentiation of overlapping strokes (the two
strokes in the upper right of Row 5), our reconstruction results are numerically
superior to the SOTA vectorization method in Table 2.

in Table 2, our method can best recover the original input line art
with a maximum IoU and minimum CD while maintaining the highest
image quality output in both T169 and T369. All methods perform
worse on T169 than on T369, suggesting that our dataset is indeed more
challenging. As Fig. 9 shows, our stroke rendering results in complex
topologies recovering the original line art better than other vectoriza-
tion methods, which is also consistent with the previous quantitative
results. The probable reason that KPV’s SSIM is the highest comes from
its low success rates — 59.17% for T169 and 82.00% for T369 (Table 3)
— meaning that it can only handle relatively simple line drawings. The
qualitative comparison results with image-to-painting-process methods
(SNP, PT) and vectorization methods (DSV, PV, KPV, VS) are shown in
Fig. 14. This indicates that quantitative performance and quantitative
evaluation results are visually consistent.

As presented quantitatively through Successful Examples Count
(SEC) metrics in Table 3, we attribute distinct failure mechanisms for
each baseline method:

1. For DSV cases exhibiting low SEC, the predominant cause stems
from unhandled stroke width variations encountered during processing
of intricate line drawings—a condition that critically destabilizes its
second-stage fine-tuning module per algorithmic specifications outlined
originally by Yan et al. [13].

2. Regarding KPV’s suboptimal performance, systematic failures
originate primarily in the preprocessing phase, where erroneous junc-
tion detections occur within high-complexity regions (e.g., red circles
in Fig. 10).

Global human-likeness. To further substantiate that our proposed
method (global PaintsUndo [5] reference images + local reordering)
in Fig. 14 generates globally human-like strokes, we conducted a
rigorous user study structured as follows: We recruited 30 participants
to evaluate stroke generation quality through comparative analysis
of animation sequences produced by six competing methods (ours,
PT, SNP, VS, KPV, PV, DSV). Participants ranked outputs based on
perceptual resemblance to human-drawn strokes using a curated set of
7
Fig. 10. Cause of KPV’s low SEC performance. For complex line drawings, un-
detected junctions during KPV’s preprocessing stage (indicated by red circles)
cause cascading failures in vectorization optimization, resulting in suboptimal
SVG outputs and low SEC.

Fig. 11. Global human-likeness ranking.

six complex line drawings exhibiting structural complexity (referenced
in supplementary videos Comparison 1–3). Key findings demonstrate
the efficacy of our approach:

1. As quantified in Fig. 11, our method achieved superior ranking
results against baseline approaches.

2. Statistical significance was confirmed through: the 𝑝-value of
ANOVA (Analysis of Variance, 3.49 × 10−49) and the one of Kruskal–
Wallis test (7.29×10−29), rejecting null hypotheses at 𝛼 = 0.05 threshold.
Moreover, a pairwise two-tailed 𝑡-test (Table 1) revealed significant
inter-method disparities, conclusively establishing optimal performance
for complex line arts.

Computational time. As shown in Table 3, our run times are
competitive, albeit slower than those of VS, PT, and SNR. However,
our reconstruction quality is superior. Meanwhile, we maintain a ren-
dering time below 0.3 s per stroke, allowing users to observe real-time,
stroke-by-stroke rendering visualizations while awaiting results without
noticeable delays.

Generalizability. As Fig. 12 shown, Beyond anime characters, our
approach can be applied to various objects, such as (a) machinery
(e.g., a motorcycle), (b) a botanical drawing (a flower), (c) complex
architectural structures, and (d) a scene containing botanicals and an
animal.

Quality of the drawing process. Since our approach follows a
human mechanical optimization strategy, three main factors influence
whether the generated stroke order is human-like or not: (1) how well
the generated drawing process matches the global reference, (2) how
well the local drawing process follows common human drawing rules,
and (3) how well the quality of each single stroke. We decompose the
evaluation of these factors into the following experiments.

Experiment 1: To measure the similarity between our generated
stroke order and the global reference (main factor 1), we calculated
precision and recall between rendered images of the stroke sequence
generated by us and the reference at each timestep, called per-frame
precision (recall); As Fig. 15 shows, the per-frame precision between

Z. Huang et al. Computers & Graphics 132 (2025) 104365
Table 1
Pairwise two-sided 𝑡-test results (𝑝-values) for global human-likeness ranking.
 Ours VS PV DSV SNP PT
 Ours – 2.69 × 10−12 3.80 × 10−05 2.83 × 10−21 4.83 × 10−26 5.26 × 10−23
 VS 2.69 × 10−12 – 1.88 × 10−08 3.48 × 10−02 6.04 × 10−11 1.31 × 10−04
 PV 3.80 × 10−05 1.88 × 10−08 – 1.12 × 10−16 2.86 × 10−23 3.87 × 10−19
 DSV 2.83 × 10−21 3.48 × 10−02 1.12 × 10−16 – 3.73 × 10−09 2.04 × 10−02
 SNP 4.83 × 10−26 6.04 × 10−11 2.86 × 10−23 3.73 × 10−09 – 1.84 × 10−05
 PT 5.26 × 10−23 1.31 × 10−04 3.87 × 10−19 2.04 × 10−02 1.84 × 10−05 –
Table 2
Quantitative comparisons. Results are presented in the 𝑋|𝑌 format, where X corresponds to the T169 dataset (Ours) and Y to the
T369 dataset [28]. (CD: 10−6, IoU/SSIM: 10−2).
 Method CD ↓ IoU ↑ PSNR ↑ SSIM ↑ FID ↓
 SNP 63.69 | 17.75 21.23 | 2.31 11.51 | 16.38 65.77 | 3.28 459.10 | 454.07
 PT 37.62 | 15.24 7.86 | 2.31 12.31 | 15.99 1.44 | 1.67 158.68 | 249.14
 PV 18.48 | 5.10 73.34 | 64.19 15.22 | 21.59 74.62 | 86.78 21.14 | 14.85
 VS 19.27 | 5.62 72.22 | 64.72 15.29 | 21.68 74.60 | 86.76 17.77 | 16.53
 KPV 29.96 | 4.39 51.34 | 69.31 14.45 | 22.70 77.41 | 87.12 56.51 | 16.32
 DSV 37.03 | 4.93 49.25 | 65.65 13.97 | 21.84 74.32 | 86.69 59.97 | 14.83
 Ours 0.87 | 0.22 98.79 | 98.69 28.08 | 46.06 74.69 | 86.82 2.28 | 1.59
Fig. 12. Generalizability of our method across more diverse categories. The input line drawings on the left of (a) ∼ (d) are sourced from T369. Our method can
be applied to (a) a motorcycle, (b) a flower, (c) architecture, and (d) a complex scene with an animal.

Table 3
Computation time and successful examples count (SEC).
 Method T169 T369

 SEC Time (s) SEC Time (s)
 SNR 169 59.89 369 63.08
 PT 169 14.33 369 11.29
 PV 169 331.59 369 68.04
 VS 169 55.48 369 20.62
 KPV 100 717.05 302 252.86
 DSV 153 179.94 363 163.51
 Ours 169 50.53 369 35.83

our process images and the final reference is always maintained at a
high level. And our per-frame recall increases gradually to 98.53% dur-
ing the drawing process, which indicates the stroke process generated
by our method can well mimic the reference drawing process.
8
Experiment 2: We set the global reference the same and render
the sequence of our segmented strokes (Ours), vectorized strokes by
VS [11], and PV [12] for comparison of the generated local stroke
order, and the humanlikeness of every single stroke. We select 9
drawings from the training data and render 27 stroke sequences with
three different sets of strokes. We invite 36 participants to rate each
sequence on a likely scale from 1 to 5. The participants were students
of higher education, and 34 of them were novices in drawing. They
were presented with each stroke sequence in GIF format and asked to
evaluate the segmentation results by rating the following statements on
a scale of 1 to 5, where 1 indicates ‘‘strongly disagree’’ and 5 indicates
‘‘strongly agree’’.

• I think that the drawing process depicted in the GIF above exhibits
a human-like quality. (Main factor 2)

• I think that each single stroke depicted in the GIF above is of high
quality. (Main factor 3)

Z. Huang et al. Computers & Graphics 132 (2025) 104365
Fig. 13. Distribution of user ratings for the drawing process and stroke quality.

Table 4
ANOVA and Kruskal–Wallis test for the Ours, PV, and VS groups.
 ANOVA Kruskal–Wallis
 Drawing process 5.42 × 10−4 4.29 × 10−4
 Stroke quality 2.89 × 10−6 6.37 × 10−7

Table 5
The 𝑝-values of two-tailed 𝑡-test between results by ours and PolyVectorization
(PV) [12], and by ours and Virtual Sketching (VS) [11].
 Ours-PV Ours-VS
 Drawing process 4.48 × 10−2 1.04 × 10−4
 Stroke quality 3.04 × 10−3 9.47 × 10−7

Note that our results here only adopted a 1-frame (the input line
drawing) global reference. This means these stroke orders are following
our inter-frame stroke ordering. This user experiment demonstrates the
validity of our inter-frame stroke ordering, while confirmation of the
validity of the global optimization is provided by Experiment 1 in the
main text, which provides a qualitative and quantitative evaluation.

Results. The average scores in terms of local stroke order are 2.98,
2.73, and 3.17 for PV, VS, and Ours, respectively. PV, VS, and Ours
score 3.59, 3.41, and 3.84, respectively, for the quality of the single
stroke.

The distribution of user ratings is visualized in Fig. 13. The stroke
sequence generated by our approach achieves a slightly higher average
score in the evaluation of the drawing process, suggesting superior
local process reconstruction. Additionally, participants rated the quality
of our strokes as the highest on average among the three methods,
highlighting the capability of our approach to reconstruct individual
strokes.

We conducted a hypothesis test between the distributions of user
ratings, and the 𝑝-values are less than 0.005 between each pair. The 𝑝-
values of ANOVA and Kruskal–Wallis test are reported in Table 4, and
these results support a significant difference between the three data
groups. To determine which specific group pairs showed statistically
significant differences in means, pairwise two-tailed hypothesis tests
were performed. The 𝑝-values two-sided two-sample 𝑡-test are reported
in Table 5. This implies a significant difference in scores between
our method and the other method, and the null hypothesis that both
average scores are the same can be rejected with a probability of (1−𝑝).

Participants recognize that the local stroke order generated by our
method is more reasonable, while our rendered strokes are of higher
9
Fig. 14. Qualitative comparisons for global drawing process. Our method
allows a good reconstruction from different moments (t=0.05, 0.1, 0.2, 0.4,
0.8, 1.0) at the stroke level when the corresponding ground truth is used as
a reference, and for the other methods, we show their original order at the
corresponding moments. From top to bottom, they are ground truth (also our
global reference), ours, PT, SNP, VS, KPV, PV, DSV.

quality. The results indicate that our inter-frame sorting algorithm and
rendered strokes outperform the other two vectorization methods.

Limitations and future work. While user studies indicate our
stroke order appears more human-like, and statistical analysis supports
this observation, this does not imply universal adoption, particularly
among experts. These individuals possess deeply personalized experi-
ences and refined drawing techniques developed over years of practice.
Both PaintsUndo and our inter-frame ordering may not meet these
artists’ expectations. Consequently, developing customized stroke or-
dering methods that adapt to experts’ individual habits based on our
existing approach represents a promising future research direction.
Another limitation is that our current method is only suitable for clean
line arts without shading effects: when the stroke overlap becomes ex-
cessive, resulting in shaded regions (such as solid circles), the skeleton
extraction algorithm we employ fails to derive reasonable cues in these
areas. This often leads to reconstruction failures. Therefore, achiev-
ing reasonable guidance generation for regions with higher ambiguity
caused by shading will constitute another direction for future work.

5. Conclusion

Our method successfully inverts the stroke-by-stroke drawing pro-
cess from a complex line art. Our stroke renderer and human me-
chanical optimization guarantee the high quality of a single stroke,

Z. Huang et al.

.

Computers & Graphics 132 (2025) 104365
Fig. 15. Per-frame precision and recall along the normalized timestep
(𝑡=1%–100%).

while global optimization is capable of reconstructing the keyframes
of the drawing process with a relatively reasonable stroke order. Our
method yields higher quality reconstructed strokes than the traditional
SOTA vectorization method, and overcomes the problem of PaintsUndo
having no stroke-by-stroke order and the hallucination frame genera-
tion. In addition, a user study has shown that our inter-frame stroke
order mechanism has some soundness. As a limitation, our method may
not deal with highly overlapped strokes (such as shading) well, which
leaves it as future work. Because the evaluation of ‘‘human-like’’ and
‘‘reasonable’’ stroke ordering is highly individualized, another future
work could also investigate how to generate individually tailored stroke
orders that can be better applied to teaching users how to draw.

CRediT authorship contribution statement

Zhengyu Huang: Writing – review & editing, Writing – origi-
nal draft, Visualization, Software, Resources, Project administration,
Methodology, Investigation, Formal analysis, Data curation, Concep-
tualization. Zhongyue Guan: Validation. Zeyu Wang: Supervision,
Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was partially supported by Guangzhou Industrial Infor-
mation and Intelligent Key Laboratory Project #2024A03J0628 and
Guangdong Provincial Key Lab of Integrated Communication, Sensing
and Computation for Ubiquitous Internet of Things #2023B1212010007
We thank the reviewers for their helpful suggestions and all the
participants who contributed to our studies.
10
Table A.1
Network architecture. CBR is a Conv-BatchNorm-ReLU block. PCB is a
PixelShuffle-Conv2d-BatchNorm block with a fixed upscale_factor=2. KS is the
kernel size. The probability for Dropout layer is 20%.
 Layer KS Stride Padding Output channel size
 Input 2 × H × W
 CBR (9,9) 2 4 128 × 𝐻

2
 × 𝑊

2

 CBR (3,3) 1 1 128 × 𝐻
2
 × 𝑊

2

 CBR (3,3) 1 1 128 × 𝐻
2
 × 𝑊

2

 CBR (3,3) 1 1 128 × 𝐻
2
 × 𝑊

2

 CBR (3,3) 1 1 128 × 𝐻
2
 × 𝑊

2

 CBR (3,3) 2 1 256 × 𝐻
4
 × 𝑊

4

 CBR (3,3) 1 1 256 × 𝐻
4
 × 𝑊

4

 CBR (3,3) 1 1 256 × 𝐻
4
 × 𝑊

4

 CBR (3,3) 1 1 256 × 𝐻
4
 × 𝑊

4

 CBR (3,3) 2 1 256 × 𝐻
4
 × 𝑊

4

 CBR (3,3) 1 1 512 × 𝐻
8
 × 𝑊

8

 CBR (3,3) 1 1 512 × 𝐻
8
 × 𝑊

8

 CBR (3,3) 1 1 256 × 𝐻
4
 × 𝑊

4

 CBR (3,3) 1 1 256 × 𝐻
4
 × 𝑊

4

 CBR (3,3) 1 1 256 × 𝐻
4
 × 𝑊

4

 CBR (3,3) 1 1 256 × 𝐻
4
 × 𝑊

4

 CBR (3,3) 1 1 256 × 𝐻
4
 × 𝑊

4

 CBR (3,3) 1 1 256 × 𝐻
4
 × 𝑊

4

 Dropout
 PCB (3,3) 1 1 64 × 𝐻

4
 × 𝑊

4

 PCB (3,3) 1 1 16 × 𝐻
2
 × 𝑊

2

 PCB (3,3) 1 1 4 × H × W
 Sigmoid 1 × H × W

Appendix A. Our network architecture

See Table A.1.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.cag.2025.104365.

Data availability

Data will be made available on request.

References

[1] Huang Z, Heng W, Zhou S. Learning to paint with model-based deep reinforce-
ment learning. In: Proceedings of the IEEE international conference on computer
vision. 2019.

[2] Liu S, Lin T, He D, Li F, Deng R, Li X, et al. Paint transformer: Feed forward
neural painting with stroke prediction. In: Proceedings of the IEEE international
conference on computer vision. 2021.

[3] Zou Z, Shi T, Qiu S, Yuan Y, Shi Z. Stylized neural painting. In: Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition. 2021, p.
15689–98.

[4] de Guevara ML, Fisher M, Hertzmann A. Segmentation-based parametric
painting. 2023, arXiv:2311.14271.

[5] Paints-Undo Team. Paints-undo GitHub page. 2024.
[6] Zhao A, Balakrishnan G, Lewis KM, Durand F, Guttag JV, Dalca AV. Painting

many pasts: Synthesizing time lapse videos of paintings. In: 2020 IEEE/CVF
conference on computer vision and pattern recognition. 2020, p. 8432–42.
http://dx.doi.org/10.1109/CVPR42600.2020.00846.

[7] Blattmann A, Dockhorn T, Kulal S, Mendelevitch D, Kilian M, Lorenz D, et al.
Stable video diffusion: Scaling latent video diffusion models to large datasets.
2023, arXiv:2311.15127.

https://doi.org/10.1016/j.cag.2025.104365
http://refhub.elsevier.com/S0097-8493(25)00206-7/sb1
http://refhub.elsevier.com/S0097-8493(25)00206-7/sb1
http://refhub.elsevier.com/S0097-8493(25)00206-7/sb1
http://refhub.elsevier.com/S0097-8493(25)00206-7/sb1
http://refhub.elsevier.com/S0097-8493(25)00206-7/sb1
http://refhub.elsevier.com/S0097-8493(25)00206-7/sb2
http://refhub.elsevier.com/S0097-8493(25)00206-7/sb2
http://refhub.elsevier.com/S0097-8493(25)00206-7/sb2
http://refhub.elsevier.com/S0097-8493(25)00206-7/sb2
http://refhub.elsevier.com/S0097-8493(25)00206-7/sb2
http://refhub.elsevier.com/S0097-8493(25)00206-7/sb3
http://refhub.elsevier.com/S0097-8493(25)00206-7/sb3
http://refhub.elsevier.com/S0097-8493(25)00206-7/sb3
http://refhub.elsevier.com/S0097-8493(25)00206-7/sb3
http://refhub.elsevier.com/S0097-8493(25)00206-7/sb3
http://arxiv.org/abs/2311.14271
http://refhub.elsevier.com/S0097-8493(25)00206-7/sb5
http://dx.doi.org/10.1109/CVPR42600.2020.00846
http://arxiv.org/abs/2311.15127

Z. Huang et al. Computers & Graphics 132 (2025) 104365
[8] Chen B, Wang Y, Curless B, Kemelmacher-Shlizerman I, Seitz SM. Inverse
painting: Reconstructing the painting process. 2024, arXiv:2409.20556.

[9] Fu H, Zhou S, Liu L, Mitra NJ. Animated construction of line drawings. ACM
Trans Graph 2011;30(6):1–10. http://dx.doi.org/10.1145/2070781.2024167.

[10] Bessmeltsev M, Solomon J. Vectorization of line drawings via polyvector fields.
ACM Trans Graph 2019;38(1). http://dx.doi.org/10.1145/3202661.

[11] Mo H, Simo-Serra E, Gao C, Zou C, Wang R. General virtual sketching framework
for vector line art. ACM Trans Graph 2021;40(4):51:1–51:14.

[12] Puhachov I, Neveu W, Chien E, Bessmeltsev M. Keypoint-driven line drawing
vectorization via PolyVector flow. ACM Trans Graph 2021;40(6). http://dx.doi.
org/10.1145/3478513.3480529.

[13] Yan C, Li Y, Aneja D, Fisher M, Simo-Serra E, Gingold Y. Deep sketch
vectorization via implicit surface extraction. ACM Trans Graph 2024;43(4).
http://dx.doi.org/10.1145/3658197.

[14] Qiu S, Wang Z, McMillan L, Rushmeier HE, Dorsey J. Is drawing order
important? In: Babaei V, Skouras M, editors. 44th Annual conference of the
European association for computer graphics, eurographics 2023 - short pa-
pers. Eurographics Association; 2023, p. 37–40. http://dx.doi.org/10.2312/EGS.
20231009.

[15] Liu J, Fu H, Tai C-L. Dynamic sketching: simulating the process of observational
drawing. In: Proceedings of the workshop on computational aesthetics. New
York, NY, USA: Association for Computing Machinery; 2014, p. 15–22. http:
//dx.doi.org/10.1145/2630099.2630103.

[16] Ha D, Eck D. A neural representation of sketch drawings. In: International con-
ference on learning representations. 2018, URL https://openreview.net/forum?
id=Hy6GHpkCW.

[17] Song J, Pang K, Song Y-Z, Xiang T, Hospedales T. Learning to sketch with
shortcut cycle consistency. In: 2018 IEEE/CVF conference on computer vision
and pattern recognition. Institute of Electrical and Electronics Engineers; 2018,
p. 801–10. http://dx.doi.org/10.1109/CVPR.2018.00090, Computer Vision and
Pattern Recognition 2018, CVPR 2018 ; Conference date: 18-06-2018 Through
22-06-2018, http://cvpr2018.thecvf.com/.

[18] Huang Z, Peng Y, Hibino T, Zhao C, Xie H, Fukusato T, et al. DualFace:
Two-stage drawing guidance for freehand portrait sketching. Comput Vis Media
2022;8(1):63–77. http://dx.doi.org/10.1007/S41095-021-0227-7.

[19] Huang Z, Xie H, Fukusato T, Miyata K. AniFaceDrawing: Anime portrait explo-
ration during your sketching. In: Brunvand E, Sheffer A, Wimmer M, editors.
ACM SIGGRAPH 2023 conference proceedings. ACM; 2023, p. 14:1–14:11. http:
//dx.doi.org/10.1145/3588432.3591548.

[20] Kim B, Wang O, Öztireli AC, Gross MH. Semantic segmentation for line drawing
vectorization using neural networks. Comput Graph Forum 2018;37(2):329–38.
http://dx.doi.org/10.1111/CGF.13365.
11
[21] Ito S, Takagi N, Sawai K, Masuta H, Motoyoshi T. Fast semantic segmentation for
vectorization of line drawings based on deep neural networks. In: International
conference on machine learning and cybernetics. IEEE; 2022, p. 231–6. http:
//dx.doi.org/10.1109/ICMLC56445.2022.9941326.

[22] Google Creative Lab. Quick, draw! dataset. 2017, https://github.com/
googlecreativelab/quickdraw-dataset. (Accessed: 11 October 2024).

[23] Noris G, Hornung A, Sumner RW, Simmons M, Gross M. Topology-driven
vectorization of clean line drawings. ACM Trans Graph 2013;32(1). http://dx.
doi.org/10.1145/2421636.2421640.

[24] Guo Y, Zhang Z, Han C, Hu W, Li C, Wong T. Deep line drawing vectoriza-
tion via line subdivision and topology reconstruction. Comput Graph Forum
2019;38(7):81–90. http://dx.doi.org/10.1111/CGF.13818.

[25] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition.
In: 2016 IEEE conference on computer vision and pattern recognition. IEEE
Computer Society; 2016, p. 770–8. http://dx.doi.org/10.1109/CVPR.2016.90.

[26] Simo-Serra E, Iizuka S, Ishikawa H. Real-time data-driven interactive rough
sketch inking. ACM Trans Graph 2018;37(4). http://dx.doi.org/10.1145/
3197517.3201370.

[27] Milletari F, Navab N, Ahmadi S. V-Net: Fully convolutional neural networks for
volumetric medical image segmentation. In: Fourth international conference on
3D vision, 3DV 2016, stanford, CA, USA, October 25-28, 2016. IEEE Computer
Society; 2016, p. 565–71. http://dx.doi.org/10.1109/3DV.2016.79.

[28] Yan C, Vanderhaeghe D, Gingold Y. A benchmark for rough sketch cleanup. ACM
Trans Graph 2020;39(6). http://dx.doi.org/10.1145/3414685.3417784.

[29] Gryaditskaya Y, Sypesteyn M, Hoftijzer JW, Pont S, Durand F, Bousseau A.
OpenSketch: a richly-annotated dataset of product design sketches. ACM Trans
Graph 2019;38(6). http://dx.doi.org/10.1145/3355089.3356533.

[30] Wang Z, Qiu S, Feng N, Rushmeier H, McMillan L, Dorsey J. Tracing versus free-
hand for evaluating computer-generated drawings. ACM Trans Graph 2021;40(4).
http://dx.doi.org/10.1145/3450626.3459819.

[31] Xiao C, Su W, Liao J, Lian Z, Song Y-Z, Fu H. DifferSketching: How differently
do people sketch 3D objects? ACM Trans Graph 2022;41(6). http://dx.doi.org/
10.1145/3550454.3555493.

[32] Kingma DP, Ba J. Adam: A method for stochastic optimization. In: Bengio Y,
LeCun Y, editors. 3rd International conference on learning representations, ICLR
2015, san diego, CA, USA, May 7-9, 2015, conference track proceedings. 2015.

[33] Puhachov I, Neveu W, Chien E, Bessmeltsev M. Keypoint-driven line drawing
vectorization via PolyVector flow. ACM Trans Graph 2021;40(6). http://dx.doi.
org/10.1145/3478513.3480529.

http://arxiv.org/abs/2409.20556
http://dx.doi.org/10.1145/2070781.2024167
http://dx.doi.org/10.1145/3202661
http://refhub.elsevier.com/S0097-8493(25)00206-7/sb11
http://refhub.elsevier.com/S0097-8493(25)00206-7/sb11
http://refhub.elsevier.com/S0097-8493(25)00206-7/sb11
http://dx.doi.org/10.1145/3478513.3480529
http://dx.doi.org/10.1145/3478513.3480529
http://dx.doi.org/10.1145/3478513.3480529
http://dx.doi.org/10.1145/3658197
http://dx.doi.org/10.2312/EGS.20231009
http://dx.doi.org/10.2312/EGS.20231009
http://dx.doi.org/10.2312/EGS.20231009
http://dx.doi.org/10.1145/2630099.2630103
http://dx.doi.org/10.1145/2630099.2630103
http://dx.doi.org/10.1145/2630099.2630103
https://openreview.net/forum?id=Hy6GHpkCW
https://openreview.net/forum?id=Hy6GHpkCW
https://openreview.net/forum?id=Hy6GHpkCW
http://dx.doi.org/10.1109/CVPR.2018.00090
http://cvpr2018.thecvf.com/
http://dx.doi.org/10.1007/S41095-021-0227-7
http://dx.doi.org/10.1145/3588432.3591548
http://dx.doi.org/10.1145/3588432.3591548
http://dx.doi.org/10.1145/3588432.3591548
http://dx.doi.org/10.1111/CGF.13365
http://dx.doi.org/10.1109/ICMLC56445.2022.9941326
http://dx.doi.org/10.1109/ICMLC56445.2022.9941326
http://dx.doi.org/10.1109/ICMLC56445.2022.9941326
https://github.com/googlecreativelab/quickdraw-dataset
https://github.com/googlecreativelab/quickdraw-dataset
https://github.com/googlecreativelab/quickdraw-dataset
http://dx.doi.org/10.1145/2421636.2421640
http://dx.doi.org/10.1145/2421636.2421640
http://dx.doi.org/10.1145/2421636.2421640
http://dx.doi.org/10.1111/CGF.13818
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1145/3197517.3201370
http://dx.doi.org/10.1145/3197517.3201370
http://dx.doi.org/10.1145/3197517.3201370
http://dx.doi.org/10.1109/3DV.2016.79
http://dx.doi.org/10.1145/3414685.3417784
http://dx.doi.org/10.1145/3355089.3356533
http://dx.doi.org/10.1145/3450626.3459819
http://dx.doi.org/10.1145/3550454.3555493
http://dx.doi.org/10.1145/3550454.3555493
http://dx.doi.org/10.1145/3550454.3555493
http://refhub.elsevier.com/S0097-8493(25)00206-7/sb32
http://refhub.elsevier.com/S0097-8493(25)00206-7/sb32
http://refhub.elsevier.com/S0097-8493(25)00206-7/sb32
http://refhub.elsevier.com/S0097-8493(25)00206-7/sb32
http://refhub.elsevier.com/S0097-8493(25)00206-7/sb32
http://dx.doi.org/10.1145/3478513.3480529
http://dx.doi.org/10.1145/3478513.3480529
http://dx.doi.org/10.1145/3478513.3480529

	LineDrawer: Stroke-level process reconstruction of complex line art based on human perception
	Introduction
	Related Work
	Drawing Process Reconstruction
	Stroke Extraction

	Method
	Problem Formulation
	Overview
	Local Stroke Rendering Network
	High-level Stroke Order Generation
	Human Mechanical Optimization

	Experiments
	Dataset and Settings
	Evaluation

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Our Network Architecture
	Appendix B. Supplementary data
	Data availability
	References

