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surface like spider 

web” 

“A lion fur 

surface” 

“A skeleton hand” “A dragon wing” “A horn of deer” “A beard of a man” 

Figure 1. Example VDM brushes generated by Text2VDM and sculpted models in Blender. Text2VDM can produce high-quality

brushes for surface details (top row) and geometric structures (bottom row) from text input. Users can rapidly create an expressive model

from a plain shape by directly applying these brushes in Blender. Yellow underlined text highlights semantics enhanced by our framework.

Abstract

Professional 3D asset creation often requires diverse

sculpting brushes to add surface details and geometric

structures. Despite recent progress in 3D generation, pro-

ducing reusable sculpting brushes compatible with artists’

workflows remains an open and challenging problem. These

sculpting brushes are typically represented as vector dis-

placement maps (VDMs), which existing models cannot

easily generate compared to natural images. This paper

presents Text2VDM, a novel framework for text-to-VDM

brush generation through the deformation of a dense pla-

nar mesh guided by score distillation sampling (SDS). The

original SDS loss is designed for generating full objects

and struggles with generating desirable sub-object struc-

tures from scratch in brush generation. We refer to this is-

sue as semantic coupling, which we address by introducing

weighted blending of prompt tokens to SDS, resulting in a
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more accurate target distribution and semantic guidance.

Experiments demonstrate that Text2VDM can generate di-

verse, high-quality VDM brushes for sculpting surface de-

tails and geometric structures. Our generated brushes can

be seamlessly integrated into mainstream modeling soft-

ware, enabling various applications such as mesh styliza-

tion and real-time interactive modeling.

1. Introduction

Sculpting brushes are essential tools in 3D asset creation,

as artists often require a variety of brushes to create surface

details and geometric structures. In modeling software, 3D

sculpting brushes are typically defined as vector displace-

ment maps (VDMs). A VDM is a 2D image where each

pixel stores a 3D displacement vector. Through these vec-

tors, VDM brushes can create complex surface details, such

as cracks and wood grain, or generate geometric structures



like ears and horns. This allows artists to apply the same

geometric pattern iteratively while sculpting.

Despite significant advances in text-to-image (T2I) [36,

41] and text-to-3D generation [23, 30, 37, 49, 50], exist-

ing methods are unsuitable for creating VDM brushes. We

summarize the challenges as follows: 1) Since VDMs are

not natural images (Figure 2), it is difficult for existing T2I

models to generate them directly. 2) From a 3D perspective,

a VDM represents mesh deformation through per-vertex

displacement vectors from a dense planar mesh. Mapping

any generated mesh to a dense planar mesh to create a VDM

is non-trivial. 3) Sculpting brushes often involve sub-object

structures, whereas most 3D generation methods can only

generate full objects. Enabling users to accurately control

the generation of sculpting brushes through text prompts in

a semantically focused manner remains challenging.

To address the challenges of brush generation, we pro-

pose Text2VDM, a novel optimization-based framework

that generates diverse and controllable VDM brushes from

text input. Our approach does not generate VDMs directly

from a T2I model. Instead, we address VDM brush gen-

eration from a 3D perspective by applying score distilla-

tion with a pre-trained T2I model to guide mesh deforma-

tion. Our framework supports three ways to initialize a base

mesh through a zero-valued, spike-pattern, or user-specified

VDM for custom shape control. For mesh deformation,

we formulate a Sobolev preconditioned optimization [35] to

maintain mesh quality with intrinsic smoothness. We also

provide optional region control using a mask of activated

mesh deformation, helping users obtain the intended brush

effects. The normal maps of the mesh are then rasterized by

a differentiable renderer for brush optimization.

We observed that the standard score distillation sampling

(SDS) [37] can lead to semantic coupling when supervising

the generation of sub-object level structures due to the as-

sociated semantics caused by the noisy gradients from the

full object. For example, a generated deer’s horn should

not be a full deer’s head, or a generated beard should not

include a nose. A straightforward solution is to use nega-

tive prompts [18, 59] to exclude undesired semantics, but

our experiments show that this semantics suppression ap-

proach is ineffective in decoupling semantics and leads to

an unstable optimization process. Instead, we propose to

enhance the semantics of part-related words by applying

weighted blending to the tokens in the prompt. This results

in semantically focused text embedding, directing toward a

more precise target distribution while reducing noisy gradi-

ents during optimization.

Our experiments demonstrate that Text2VDM produces

high-quality and diverse VDM brushes that can be directly

integrated into mainstream modeling software, such as

Blender [5] and ZBrush [12]. Compared to existing meth-

ods that directly generate full 3D models, our approach ad-

(a) Vector Displacement (b) Standard Displacement 

Figure 2. Difference between vector and standard displace-

ment. The VDM enables full 3D vector displacement, while the

height map only allows unidirectional standard displacement.

dresses a different use case where brush-based user sculpt-

ing is desirable. This enables artists to interactively use a

variety of brushes to sculpt diverse and expressive models

from a plain shape.

This paper makes the following contributions:

• We first introduce the task of text-to-VDM brush genera-

tion, which is challenging to tackle directly using current

text-to-image and text-to-3D methods.

• We propose Text2VDM, a novel framework for text-to-

VDM brush generation that is readily compatible with

artists’ workflow of 3D asset creation.

• We design a novel Semantic Enhancement SDS loss,

which uses weighted blending to mitigate semantic cou-

pling for sub-object structure generation.

2. Related Work

Text to Local 3D Generation and Editing. With recent

advances in diffusion models [41] and differentiable 3D

representations [1, 33, 35, 44, 46], many methods for text-

guided full 3D model generation have emerged [8, 11, 23,

25, 31, 38, 42]. Since 3D content creation is an iterative pro-

cess that often requires user interaction, more attention has

been directed toward localized 3D generation and editing.

For example, 3D Highlighter [9] and 3D Paintbrush [10]

use text as input, leveraging pre-trained CLIP models [40]

or diffusion models [37] to supervise the optimization of

neural networks for segmenting the regions of a 3D model

that match the text description. Based on the information

from these segmented regions, further editing of texture and

geometry can be applied to the 3D model. Furthermore,

SKED [32] and SketchDream [27] introduce sketches as an

additional modality to assist in localized editing. To enable

more precise control, FocalDreamer [24], MagicClay [4],

and Tip-Editor [60] allow users to specify the editing lo-

cation directly within the 3D space. These works rely on

optimization-based methods to edit specific objects, often

resulting in non-reusable editing outcomes. Additionally,

each edit requires a lengthy optimization process, making

interactivity difficult to achieve.
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Figure 3. Overview of Text2VDM. Starting with a dense planar mesh constructed from a zero-valued VDM, users can initialize the mesh

volume through a default spike-pattern VDM or a user-specified VDM. Given the text prompt and region mask, we propose the Semantic

Enhancement SDS loss LSE to guide mesh deformations through a mesh Laplacian L iteratively, achieving semantically focused generation

of surface details or geometric structures. After generation, vertex displacements are baked into the final VDM.

Diffusion Priors for 3D Generation. Score distillation

sampling (SDS) [37, 52] provides pixel-level guidance by

seeking specific modes in a diffusion model, inspiring fur-

ther research to improve optimization-based 3D genera-

tion [3, 26, 53, 54, 56]. Some studies focus on mitigating

the “Janus” problem [2, 15], while others fine-tune diffu-

sion models with multiview datasets to enhance 3D con-

sistency [28, 45]. Recent research focuses on refining the

design of SDS loss to achieve more precise guidance. For

instance, Make-it-3D [50] introduces two-stage optimiza-

tions to improve textured appearance, while Fantasia3D [8]

dynamically modifies the time-dependent weighting func-

tion within SDS computations. Additionally, several meth-

ods [18, 59] incorporate negative prompts as the conditional

term to further refine the optimizations. Although diffusion

priors have achieved promising results, their application in

generating sub-object structures without global context as a

reference is still challenging.

Appearance and Geometric Brush Synthesis. The con-

cept of brushes is very common in the creative process

of digital artists, serving as a reusable local decorative

unit. Appearance brushes focus on color representation and

drawing styles in 2D space. With the development of gen-

erative models [13, 41], many works have explored the syn-

thesis of procedural material [21, 22] for 3D object textur-

ing and appearance brushes for interactive painting [16, 47],

realistic artworks generation [29, 34, 61], and applying styl-

ization [17, 19]. Unlike appearance brushes, geometric

brushes focus on modifying geometry by moving the ver-

tices of a mesh in 3D space. VDM brushes, as an extension

of standard geometric brushes, provide more complex geo-

metric effects by utilizing VDMs. To the best of our knowl-

edge, only a few techniques adopted the concepts of VDM

for generation [43, 55] and geometric texture transfer [14].

Recently, concurrent work [57] explored using a single im-

age as input and leveraged a diffusion model for generating

multiview normal maps to guide VDM reconstruction. In

comparison, our method is fundamentally different in tack-

ling the semantic coupling problem arising from text guid-

ance. This demonstrates that generating geometric brushes

is a highly promising research direction.

3. Methodology

To generate VDM brushes compatible with mainstream

modeling software, we begin by constructing a dense mesh

from an initial VDM, as shown in Figure 3. We then ap-

ply score distillation with Stable Diffusion to guide high-

quality mesh deformation formulated as a form of Sobolev

preconditioned optimization [35]. To produce the intended

sub-object level structure described in the text, we design

a Semantic Enhancement SDS loss by applying weighted

blending to the tokens in the prompt, effectively handling

the issue of semantic coupling in SDS.

3.1. Brush Initialization

We provide three methods to initialize a base mesh for brush

generation via a zero-valued VDM, a spike-pattern VDM,

or a user-specified VDM. A VDM is represented as a 512×



512 three-channel image, in which each channel stores the

displacement in the X, Y, or Z direction, respectively. We

first construct a planar grid mesh by creating two triangles

for every 2×2 pixels and then apply the displacement stored

in the VDM to mesh vertices. The values in these three

initial VDMs range from 0 to 1, in which 0 represents no

displacement, and 1 corresponds to half of the mesh’s edge

length in the positive axis direction. Since users can apply

sculpting brushes symmetrically, our initial VDM does not

need to store any negative values.

Our three methods for brush initialization facilitate the

generation of diverse sculpting brush styles. The zero-

valued VDM results in a planar mesh, which is our default

setup when no control is provided. The spike-pattern VDM

is suitable for generating protruding geometric structures, as

it can effectively adjust the Laplacian term in Equation (2)

to steer the gradient direction for mesh deformation. For

better control of the brush’s volume and direction, we also

provide an interface for users to create custom VDMs, so

the user-specified brush initialization can effectively guide

mesh deformation toward the target structure.

3.2. Brush Generation via Mesh Deformation

Given the vertices v on the initialized base mesh, our

method aims to learn a mesh deformation to the target brush

shape. The vertex positions v̂ after mesh deformation can

be expressed by:

v̂ = argmin
v
LSE(Dc(v), y), (1)

where c represents the camera setup in a differentiable ren-

derer D [20]. The loss function LSE receives the rendered

normal image Dc(v) and text input y to evaluate the se-

mantic guidance, which is detailed in Section 3.3. To ac-

company the external forces from LSE that drive the mesh

deformation with intrinsic smoothness energies, we follow

the framework of a Sobolev preconditioned gradient de-

scent [35], where the base mesh is reparameterized by the

mesh Laplacian L:

v∗ = (I + λL)v. (2)

This preconditioning involves solving a sparse linear system

at every iteration, modifying the gradient descent update for

each mesh deformation step to:

v ← v − η(I + λL)−1
∂LSE

∂v
, (3)

where η is the learning rate, I is the identity matrix, and λ

is a hyperparameter to control the extent of gradient diffu-

sion over the entire domain. We set λ = 15 throughout our

experiments to balance the global structure and fine details

during mesh deformation.

Compared to directly adding a Laplacian regularization

term to Equation (1), the preconditioning framework [35] is

critical in achieving large mesh deformation while main-

taining proper topology with reduced triangle flips (Fig-

ure 4). Several works [11, 51] adopt the strategy by Aiger-

man et al. [1], parameterizing deformation through Jacobian

fields that capture the scaling and rotation of each trian-

gle. Although this method effectively smooths vertex dis-

placements, the local deformation represented in Jacobians

accumulates, leading to global drifting for open-boundary

meshes, making it challenging to bake the mesh as a brush.

Additionally, we provide an optional region mask to re-

strict mesh deformation to the user-defined region during

optimization. It helps maintain zero values in unused VDM

areas when generating geometric structures. For producing

surface details, the region mask ensures that the brush effect

meets user-customized requirements (Figure 9).

By framing the VDM generation task as mesh deforma-

tion through preconditioned optimization, our framework

preserves the favorable initial mesh topology and ensures

control throughout the procedure. The resulting mesh pre-

serves the original structure while incorporating rich local

deformations, making it well-suited for baking as a brush.

“A dragon wing” 

“A lion fur surface” 

λ=0 λ=15 (Ours) λ=30λ=0 w/ Reg（a） （b） （c） （d）

Figure 4. Effect of λ. (a) Low-quality results w/o mesh smooth-

ness, (b) low-quality results w/ direct Laplacian regularization, (c)

our adopted preconditioning scheme with λ = 15, and (d) results

with over-smoothness caused by a larger λ.

3.3. Semantic Enhancement Score Distillation

Current text-to-3D generation methods like DreamFu-

sion [37] often optimize a 3D representation parameterized

by θ so that rendered images x = g(θ) resemble 2D sam-

ples produced by a pre-trained T2I diffusion model for a

given text prompt y. g functions as a differentiable ren-

derer. The T2I diffusion model ϕ predicts the sampled noise

ϵϕ(xt; y, t) of a rendered image xt at a noise level t for

the text input y. To make rendered images follow the text-

conditioned distribution in Stable Diffusion, the SDS loss

updates θ by estimating the gradient:

∇θLSDS(ϕ,x) = Et,ϵ,c

[

ω(t) (ϵϕ(xt; y, t)− ϵ)
∂x

∂θ

]

, (4)



where ω(t) is a time-dependent weighting function.

However, the SDS loss cannot effectively supervise sub-

object structure generation due to the issue of semantic cou-

pling in full objects. For example, when using the SDS

loss to generate a tortoise shell, it also usually generates

the tortoise’s tail and head, causing semantic coupling (Fig-

ure 7). We believe that the issue of semantic coupling in

SDS stems from the training data of Stable Diffusion, in

which most images contain full objects rather than separate

parts. Therefore, the semantics of full objects often appear

in the target distribution conditioned on text only describing

sub-object structures.

A straightforward approach is using negative distribu-

tions via Classifier Score Distillation (CSD) [59] or Vari-

ational Score Distillation (VSD) [54] to suppress coupled

semantics. CSD employs predefined negative prompts, re-

sulting in more accurate negative distributions than those

adaptively learned by VSD [59]:

∇θLCSD(ϕ,x) = Et,ϵ,c[(ωpos · ϵϕ(xt; y, t)

− ωneg · ϵϕ(xt; yneg, t))
∂x

∂θ
], (5)

where ωpos and ωneg denote different weights for positive

and negative prompts. It requires two separate inferences

with positive and negative prompts to obtain two distribu-

tions, which are then subtracted to suppress coupled seman-

tics. However, our experiments show that CSD is ineffective

in decoupling semantics because the negative prompt can-

not accurately represent the undesirable coupled semantics

in the positive prompt (Figure 7). This results in noisy guid-

ance, making CSD less effective in decoupling semantics.

Unlike semantic suppression in CSD, we propose a se-

mantic enhancement method to mitigate semantic coupling

by enhancing the semantics of part-related words. This can

lead to a more accurate and stable target distribution, as

shown in Section 4.3. Our key design is to apply weighted

blending to the tokens in the original prompt to obtain a se-

mantically focused text embedding, which serves as stable

guidance for the optimization process. We define the Se-

mantic Enhancement SDS loss as:

∇θLSE(ϕ,x) = Et,ϵ,c

[

ω(t)
(

ϵ
∗

ϕ(xt; y, t)− ϵ
) ∂x

∂θ

]

, (6)

where ϵ∗ϕ(·) uses a text embedding weighted by Com-

pel [48]. Specifically, we assign a weight s to each word

in the prompt and compute the weighted embedding ew for

each word by blending the original word embedding e and

the empty text embedding e0: ew = e0 + s · (e − e0). By

concatenating the weighted embedding of each word in se-

quence, we obtain the final semantically focused text em-

bedding. In our experiments, we found that using s = 1.12

for words that require semantic enhancement can achieve

stable optimization and effectively alleviate the issue of se-

mantic coupling.

Ours Text2Mesh Paint-it TextDeformer

“A broken 

brick wall 

surface with 

many cracks” 

“A broken 

wall surface 

damaged by a 

cannonball” 

“An aged 

wooden 

surface” 

“A lion fur 

surface” 

Figure 5. Qualitative comparisons of generated brushes for

surface details. Our method captures geometry details guided

by text, effectively preserving the surface structure and avoiding

mesh distortion.

4. Experiments

We conducted experiments to evaluate the various capabil-

ities of Text2VDM both quantitatively and qualitatively for

text-to-VDM brush generation. We then present an ablation

study that validates the significance of our key insight into

Semantic Enhancement SDS, as well as the effect of the re-

gion mask and VDM initialization.

4.1. Qualitative Evaluation

To the best of our knowledge, Text2VDM is the first frame-

work to generate VDM brushes from text. We adapted three

existing methods for comparison and classified them into

two categories. The first category includes Text2Mesh [31]

and TextDeformer [11], which generate a brush mesh

through text-guided mesh deformation on a planar mesh,

following a process similar to ours. For the second cate-

gory, we opt to directly generate VDM via Paint-it [58].

Notably, this method originally uses SDS to optimize a

UNet for generating PBR textures. We reframed it to suit

our VDM brush generation task, modifying it to generate

VDM through SDS optimization of the UNet. In geometric

structures generation experiment (Figure 6), all methods are

compared fairly, with the same non-zero VDM initializa-

tion and mask applied to each prompt (see Appendix B.2).

For surface details (Figure 5), all methods start with a zero-

valued VDM and no masks to ensure a fair comparison.

Compared to other methods, Text2VDM can generate

better-quality VDM brushes. Text2Mesh applies displace-

ment to each vertex along normal directions, resulting in

limited mesh deformation. TextDeformer indicates the ac-

cumulation of local deformations in the Jacobians, which

results in global mesh drift, making it challenging to bake



“A human ear” 

“A human spine” 

“A goat horn” 

“A lip of human” 

Ours Text2Mesh Paint-it TextDeformer

Figure 6. Qualitative comparisons of generated brushes for geometric structures. Our method accurately presents key geometric

features described by text, facilitating downstream applications in modeling software.

these meshes into VDM. Reframed Paint-it VDM genera-

tion is equivalent to optimizing the three-axis displacement

of each vertex on the mesh with SDS. Although the UNet

reduces noise from the SDS [58], smooth regularization is

still required to ensure mesh quality, which makes achieving

high-quality mesh generation quite challenging.

4.2. Quantitative Evaluation

We quantitatively evaluated our framework regarding gen-

eration consistency with text input and mesh quality. We

used 40 distinctive text prompts for VDM generation.

Generation Consistency with Text. We initially assessed

the relevance of the generated results to the text descrip-

tions [40]. 12 different views were rendered for average

scores respectively, as presented in Table 1. Our approach

achieves the highest scores compared to baseline methods.

Mesh Quality. We evaluated mesh quality by examining

self-intersection. Paint-it and Text2Mesh, which utilize di-

rect vertex displacement, often converge to a local mini-

mum and disregard the mesh triangulation. While TextDe-

former exhibits the lowest self-intersection, its tendency to

produce over-smoothed results frequently results in losing

object features described in text prompts.

Table 1. Quantitative evaluation of state-of-the-art methods. The

geometry CLIP score is calculated on shaded images with uniform

albedo colors [39], and self-intersection is quantified as the ratio

of self-intersected mesh faces to the total number of faces.

Geometry CLIP Score ↑ Mesh Self-Intersection ↓

Paint-it 0.2375 19.42%

Text2Mesh 0.2497 7.18%

TextDeformer 0.2477 0.04%

Ours 0.2556 0.77%

Table 2. User evaluation of generated VDMs.

User Preference ↑ Geometry Quality Consistency with Text

Paint-it 3.1% 1.7%

Text2Mesh 18.3% 27.3%

TextDeformer 3.3% 3.4%

Ours 75.3% 67.6%

User Study. We further conducted a user study to evalu-

ate the effectiveness and expressiveness of our method. A

Google Form was utilized to assess 1) geometry quality and

2) consistency with text. We recruited 32 participants, of

whom 14 are graduate students majoring in media arts, and

18 are company employees specializing in AI content gen-



Ours SDS CSD 𝜔neg = 0.1 CSD 𝜔neg = 0.5

“A tortoise shell” 

“A horn of deer” 

SDS w/ AaE

Figure 7. Effect of Semantic Enhancement SDS. Our method effectively mitigates semantic coupling issues in SDS, such as generating

the tortoise’s tail and head or the deer’s ear and mouth, by providing more focused semantic guidance. In contrast, the semantic suppression

method used in CSD and the other semantic enhancement approach proposed by Attend-and-Excite both lead to an unstable optimization.

eration. The participants were instructed to choose the pre-

ferred renderings of VDM from different methods in ran-

domized order, as shown in Table 2. The results show par-

ticipants preferred our method by a significant margin.

4.3. Ablation Study

Effect of Semantic Enhancement SDS. Figure 7 compares

the results generated by the original SDS [37], our Semantic

Enhancement SDS with Compel, SDS with another seman-

tic enhancement method in Attend-and-Excite (AaE) [7],

and CSD [59] with two different annealed weights for the

negative prompts: “tortoise tail, tortoise head” and “deer’s

ear, deer’s mouth.” We also qualitatively compare these

methods by visualizing their performance on semantic de-

coupling using the same Stable Diffusion for 2D image gen-

eration (Figure 8). Compared to semantic suppression us-

ing negative prompts and semantic enhancement by AaE,

our design of introducing a semantically focused text em-

bedding via Compel to SDS is most effective in resolving

the issue of semantic coupling.

Key Insight. As discussed in Section 3.3, SDS can result in

semantic coupling when generating sub-object structures,

leading to artifacts like the tortoise’s tail and head or the

deer’s ear and deer’s mouth. We observed that the semantics

represented by negative prompts are also coupled. There-

fore, meaningless semantics can emerge when applying se-

mantic suppression in SDS, which leads to unstable opti-

mization. Increasing the weight of negative prompts fur-

ther reduces the overall quality of generated results. AaE

enhances the cross-attention map of specific tokens by con-

tinuously updating the latent code. However, AaE is not

suitable for the SDS framework because the latent code is

affected by different camera poses and random noise at each

iteration. This temporal randomness undermines the conti-

nuity of the latent code, resulting in unstable optimization

and subpar results. In contrast, our method uses Compel

to enhance semantics and achieves more effective semantic

decoupling. Moreover, the semantically focused text em-

bedding produced by Compel is independent of temporal

variation. These properties help mitigate semantic coupling

during SDS optimization, leading to high-quality sub-object

geometric structures. Meanwhile, our method can also en-

hance the semantics in the text prompt for surface detail

generation (see Appendix A.2).

“A tortoise shell”

(a) Semantic suppression 

“A tortoise shell”

Meaningless semantic distribution“A tortoise head” “A tortoise tail”“A tortoise shell”

(b) Enhanced semantic by Compel (c) Enhanced semantic by AaE 

Figure 8. Visualization of semantic decoupling performance.

The images generated by the T2I model qualitatively visualize

sub-object semantics. (a) Coupled semantics in positive and neg-

ative prompts lead to meaningless distributions when subtracted.

(b) Enhanced semantics by Compel achieves stable decoupling.

(c) AaE can only ensure that the enhanced semantics are preserved,

but cannot decouple negative ones effectively.

Effect of Region Mask. Figure 9 demonstrates two region

masks and their control over surface detail generation given

a text prompt. Without a region mask, the results can still



w/ mask w/o mask

“A stone surface with many cracks”

Figure 9. Effect of region mask. Region masks can effectively

control the pattern of surface details based on text input.

match the text prompt but lack a specific pattern. By us-

ing a region mask and maintaining an activation ratio of

1/2 throughout the total iterations as a warm-up stage, we

achieve a reasonable tradeoff between mask-result align-

ment and generation diversity (see Appendix A.3).

Effect of VDM Initialization. Our method demonstrates

that user-specified VDMs can effectively control the vol-

ume and direction of generated geometric structures. Fig-

ure 10 shows that the results are high-quality and match

the text descriptions well, such as the elf ear and pauldron.

As this initializes the Laplacian term and steers the gradi-

ent flow in geometric structure generation, users can easily

specify an initial VDM or choose a VDM template provided

in our framework to generate expressive results.

w/ user-specified VDM w/ zero-valued VDM

“An elf ear”

“A royal pauldron”

Figure 10. Effect of VDM initialization. User-specified VDMs

can help achieve the intended final effect of geometric structures

by initializing the brush’s volume and direction.

4.4. Applications

Once various VDMs are generated, users can use these

brushes to meet diverse creative needs in modeling soft-

ware. For example, they can apply VDM brushes for mesh

stylization and a real-time iterative modeling process.

Local-to-Global Mesh Stylization. Although mesh styl-

ization is a complex task even for professional artists, com-

bining different surface details allows users to achieve styl-

ization quickly (see Appendix C.3).

Figure 11. Coarse to fine interactive modeling. By combining

geometric structures brushes and surface details brushes for iter-

ative sculpting in modeling software, users can rapidly create an

expressive model from a plain shape (top left).

Coarse-to-Fine Interactive Modeling. Unlike previous

methods [4, 60] that require a lengthy optimization process

for each edit and result in non-reusable outcomes, our gen-

erated VDM brushes can be directly used in modeling soft-

ware. This enables users to apply the generated brushes

easily and interactively (Figure 11).

5. Conclusion

We have presented Text2VDM, a novel framework for

VDM brush generation from text. A VDM is a non-natural

2D image where each pixel stores a 3D displacement vector,

making it challenging for existing T2I models to generate.

Therefore, we treat VDM generation as diffusion-guided

mesh deformation formulated as a form of Sobolev precon-

ditioned optimization. To mitigate semantic coupling issues

in SDS, we propose using weighted blending for prompt to-

kens, achieving high-quality brush generation. Moreover,

we introduce two control methods, i.e., region and shape

control, to meet customized requirements. The generated

VDMs are directly compatible with mainstream modeling

software, enabling various applications such as mesh styl-

ization and interactive modeling.

Limitations and Future Work. While our framework can

generate high-quality VDM brushes, they may encounter

multiview inconsistencies, a common issue introduced by

SDS. View-consistent diffusion models like MV2MV [6]

may be helpful to further handle this. Additionally, errors

of the T2I models may guide wrong 3D generation, such

as the wrong number of fingers in the generated skeleton

hand. VDMs demonstrate that complex 3D models can be

efficiently created using diverse reusable sculpting brushes.

Future exploration of 3D generation through the assembly

of modular components with similar design principles holds

promising research value.
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