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Abstract

Event cameras are bio-inspired sensors that capture visual in-
formation through asynchronous brightness changes, offering
distinct advantages including high temporal resolution and
wide dynamic range. While prior research has investigated
event-based 3D reconstruction for extreme scenarios, exist-
ing methods face inherent limitations and fail to fully ex-
ploit the unique characteristics of event data. In this paper,
we present EvDiff3D, a novel two-stage 3D reconstruction
framework that integrates event-based geometric constraints
with an event-aware diffusion prior for appearance refine-
ment. Our key insight lies in bridging the gap between phys-
ically grounded event-based reconstruction and data-driven
appearance repair through a unified cyclical pipeline. In the
first stage, we reconstruct a coarse 3D scene under supervi-
sion from event loss and event-based monocular depth con-
straints to preserve structural fidelity. The second stage fine-
tunes an event-aware diffusion model based on a pretrained
video diffusion model as a repair prior to enhance the ap-
pearance in under-constrained regions. Based on the diffu-
sion model, our pipeline operates within a reconstruction-
generation cycle that progressively refines both geometry
and appearance using only event data. Extensive experiments
on synthetic and real-world datasets demonstrate that EvD-
iff3D significantly outperforms existing methods in percep-
tual quality and structural consistency.

Introduction
Event cameras are bio-inspired vision sensors that asyn-
chronously capture brightness changes at each pixel with
microsecond latency. Unlike conventional frame-based cam-
eras that sample scenes at fixed intervals, event cam-
eras respond exclusively to pixel-level intensity changes
(i.e., events). These distinctive characteristics endow event
cameras with superior temporal resolution and wider dy-
namic range, facilitating numerous applications across com-
puter vision (Jiang et al. 2020; Chen et al. 2025a; Gal-
lego et al. 2020; Alonso and Murillo 2019; Liang et al.
2024; Chen et al. 2024; Zhou et al. 2025; Chen et al.
2025b), robotics (Chamorro, Sola, and Andrade-Cetto 2022;
Mahlknecht et al. 2022; Mueggler et al. 2018), and
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VR (Chen, Wang, and Wang 2025; Zhang et al. 2024; Mor-
genstern et al. 2023; Dubeau et al. 2020).

Recent advances have extended event-based methods
from low-level vision tasks to high-level applications, in-
cluding 3D scene reconstruction and neural rendering.
Neural representations such as Neural Radiance Fields
(NeRF) (Mildenhall et al. 2021) and 3D Gaussian Splatting
(3DGS) (Kerbl et al. 2023) have achieved remarkable suc-
cess in photorealistic scene synthesis. However, these meth-
ods typically require dense, high-quality RGB images and
exhibit degraded performance under sparse, noisy, or asyn-
chronous inputs. Therefore, this limitation has motivated the
integration of event cameras to leverage their unique advan-
tages in challenging scenarios.

Despite the valuable insights from existing work, inte-
grating event cameras with neural representations remains
highly challenging. Purely event-based approaches (e.g.,
EventNeRF (Rudnev et al. 2023), Ev-NeRF (Hwang, Kim,
and Kim 2023), Event-3DGS (Han et al. 2024)) leverage
the high temporal resolution of event streams to constrain
intensity variations during camera motion. However, rely-
ing exclusively on event data fails to capture rich seman-
tic content due to the inherent sparsity of event streams, as
shown in Figure 1 (c). In contrast, dual-modality methods
that combine event data with RGB frames, e.g., E2NeRF (Qi
et al. 2023), Deblur e-NeRF (Low and Lee 2024), Ev-
DeblurNeRF (Cannici and Scaramuzza 2024), achieve more
detailed appearance reconstruction. Nevertheless, these ap-
proaches depend on well-calibrated images and remain con-
strained by the limitations of RGB cameras under extreme
conditions. This dependency reduces real-world adaptability
and introduces training redundancy. Consequently, existing
methods either fail to effectively recover fine-grained details
or underexploit the full potential of event data.

To address these limitations, we introduce EvDiff3D, a
novel event-based 3D reconstruction framework that inte-
grates event-aware generative priors with event-based geo-
metric constraints within a synergetic framework. Our key
insight lies in bridging the gap between physically grounded
event-based reconstruction and data-driven appearance re-
pair through a unified cyclical optimization pipeline.

Specifically, we propose a two-stage optimization frame-
work for reconstructing high-fidelity 3D scenes, consisting
of an initial structural construction followed by an appear-
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Figure 1: Comparison of Our EvDiff3D with baselines. Our EvDiff3D improves event-based 3DGS reconstruction by integrat-
ing event-based geometric constraints and an event-aware diffusion repair model.

ance refinement. In the first stage, we generate a coarse
3DGS by jointly optimizing an event loss with monocu-
lar depth constraints derived from event-based depth esti-
mation (Zhu et al. 2025). While this stage produces a ge-
ometrically plausible 3DGS, the resulting appearance and
textures often exhibit artifacts and missing content due to
the inherent sparsity of event data. To address these limita-
tions, the second stage fine-tunes an event-aware diffusion
model, leveraging a pretrained video diffusion model Dy-
namiCrafter (Xing et al. 2024) as a generative prior to repair
under-constrained regions and enhance visual fidelity. Con-
cretely, using a large-scale, real-world video dataset (Ling
et al. 2024), we first perform 3D scene reconstruction with
intensity-difference supervision to simulate event data, com-
pensating for the absence of actual event data. From the re-
constructed scenes, we render videos along the same camera
trajectories as the reference videos, using them to fine-tune
the diffusion model for event-aware artifact repair under su-
pervision from the original reference videos. Additionally,
we extract global scene features from randomly sampled
event frames (i.e., accumulated events), which provide struc-
tural cues for conditioning the diffusion model. In this way,
we obtain an event-aware diffusion model that facilitates a
unified cyclical pipeline for reconstruction and repair, effec-
tively aligning event-induced structure with generative pri-
ors to recover semantically rich and visually coherent scene
details, as shown in Figure 1(d).

We validate our method on both synthetic and real-world
datasets, demonstrating that EvDiff3D significantly outper-
forms previous event-based methods. Our approach achieves
a 12.1% improvement on PSNR metrics and produces qual-
itatively superior results with sharper structures and en-
hanced appearance details.

The key contributions of this work are fourfold:
• We propose EvDiff3D, a novel two-stage framework

for event-based 3D reconstruction that integrates event-
based geometric constraints with diffusion priors.

• We develop a video diffusion model that efficiently re-
pairs event-aware artifacts and generates plausible con-
tent in under-constrained regions.

• We introduce a unified cyclical optimization pipeline that
progressively refines artifact-prone views while preserv-
ing event-induced structural integrity.

• We conduct comprehensive experiments on both syn-
thetic and real-world datasets, demonstrating state-of-
the-art performance in event-based 3D reconstruction.

Related Work
Neural Representations for 3D Reconstruction Neu-
ral representations have achieved remarkable success in
photorealistic scene synthesis. NeRF (Mildenhall et al.
2021) pioneered neural view synthesis by optimizing fully-
connected networks supervised by sparse multi-view obser-
vations. Subsequent works improved efficiency and quality:
Mip-NeRF (Barron et al. 2021) enhances detail preserva-
tion through anti-aliased conical frustum rendering, while
Instant-NGP (Müller et al. 2022) achieves acceleration
using multiresolution hash tables. 3D Gaussian Splatting
(3DGS) (Kerbl et al. 2023) represents scenes through ex-
plicit Gaussian primitives, enabling real-time rendering via
differentiable rasterization. However, these methods require
dense, high-quality RGB images and exhibit degraded per-
formance under sparse or asynchronous inputs. Our frame-
work builds upon 3DGS while addressing event-based re-
construction challenges.
Event-Based 3D Reconstruction Event cameras asyn-
chronously capture brightness changes with superior tem-
poral resolution. Recent neural rendering approaches have
integrated event data with established frameworks to lever-
age these unique characteristics. Purely event-based meth-
ods, e.g., Ev-NeRF (Hwang, Kim, and Kim 2023), Event-
NeRF (Rudnev et al. 2023), exploit the high temporal res-
olution to constrain intensity changes but struggle with se-
mantic content recovery due to event sparsity, often resulting
in artifacts and limited color fidelity. Dual-modality meth-
ods (Qi et al. 2023; Cannici and Scaramuzza 2024; Lee and
Lee 2025) combine event data with RGB frames to achieve
deblurring and temporal consistency. Nevertheless, these ap-
proaches are highly dependent on well-calibrated RGB im-
ages and remain constrained by the limitations of conven-
tional RGB cameras under challenging or extreme condi-
tions. Consequently, existing methods face inherent trade-
offs: purely event-based approaches lack the capacity to re-
construct fine details, while dual-modality approaches di-
minish the full potential of event data by relying heavily on
RGB supervision. Recently, DiET-GS (Lee and Lee 2025)
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Figure 2: EvDiff3D pipeline. Overview of the proposed EvDiff3D framework. The first stage reconstructs a coarse 3DGS using
event loss and event-based depth constraints. The second stage fine-tunes an event-aware diffusion model to repair under-
constrained regions and enhance appearance details.

also incorporates diffusion priors. However, it still relies on
RGB images, and its diffusion prior is directly adapted from
image-generation models, limiting its robustness in event-
only scenarios. In contrast, our method enables high-fidelity
3D reconstruction using only event data by introducing a
specialized event-aware diffusion prior within a cyclical op-
timization pipeline, fully exploiting the unique strengths of
event streams for 3D reconstruction.
Diffusion Models for 3D Reconstruction DreamFu-
sion (Poole et al. 2023) introduced Score Distillation Sam-
pling (SDS), enabling NeRF training through pretrained 2D
diffusion models. Improvements include FlowDreamer (Li,
Chu, and Shi 2024) with Unified Classifier-Free Guidance
and ProlificDreamer (Wang et al. 2024) with Variational
Score Distillation. Recently, methods like ReconFusion (Wu
et al. 2024), 3DGS-Enhancer (Liu, Zhou, and Huang 2024),
and GenFusion (Wu et al. 2025) utilize diffusion priors for
sparse-view reconstruction enhancement. However, these
approaches are primarily designed for RGB-based scenar-
ios and are ineffective in repairing event-specific artifacts
or handling the unique characteristics of event data. In this
work, we introduce the first event-aware diffusion prior tai-
lored for event-based 3D reconstruction. Our method syn-
ergistically integrates event-aware generative priors with
event-driven geometric constraints, effectively addressing
the challenges of data sparsity and semantic content recov-
ery inherent in event cameras.

Method
We propose EvDiff3D, a two-stage framework that ad-
dresses the challenge of high-fidelity 3D reconstruction
based on only event data, as shown in Figure 2. Our ap-
proach is guided by an event-aware diffusion prior com-
bined with event-based geometric constraints. The first stage
leverages event loss and event-based depth cues to ensure
structural fidelity, reconstructing a coarse 3DGS. The sec-
ond stage fine-tunes an event-aware diffusion model to re-

pair under-constrained regions and enhance semantic detail.
A cyclical pipeline is applied to progressively refine both
geometry and appearance, fully exploiting the unique advan-
tages of event cameras without requiring RGB images.

Stage 1: Event-Based Geometric Optimization
In the first stage, we reconstruct a coarse 3DGS from event
sequences to capture the scene’s global structure and ge-
ometry. This initialization is essential for the subsequent
diffusion-based optimization, as 3DGS may struggle to
achieve fine texture reconstruction under the highly stochas-
tic generative guidance of diffusion models, which poses
significant convergence challenges for our cyclical optimiza-
tion pipeline. Through this coarse geometric optimization,
we establish a robust structural foundation.

Our approach builds upon existing event-based recon-
struction methods (Rudnev et al. 2023; Qi et al. 2023;
Hwang, Kim, and Kim 2023) by incorporating a basic event
loss. Additionally, we introduce a depth loss produced by
event-based depth estimation to better constrain depth infor-
mation, thereby leveraging event data’s inherent advantage
in capturing structural fidelity.
Event Loss. During optimization, we render two images It1
and It2 at timestamps t1 and t2. We convert both images
to log space and compute their difference. This difference
map is then compared with the ground truth event frame to
calculate the supervision loss:

Levent = ∥(log(It1)− log(It2))−E(t1, t2)∥1, (1)

where E represents the event frame with element Ex,y at
position (x, y) recording the event count.
Event-Based Depth Loss. To further constrain the 3DGS
geometry, we leverage monocular depth estimation derived
from event data using an off-the-shelf event-based depth
estimator (Zhu et al. 2025). Given depth estimation Devent
from the event data, we render a corresponding depth map



Dpred from the 3DGS. The depth loss is computed as the L2

distance between the rendered and estimated depth maps:

Ldepth = ∥(sDpred + t)−Devent∥2, (2)

where s and t are scale and shift parameters used to align the
two depth maps, optimized during the training process.
Coarse Optimization. The overall loss function for the first
stage combines Equations 1 and 2:

Lcoarse = Levent + λdLdepth, (3)

where λd = 0.5 denotes the weighting factor that balances
the two loss components.

Stage 2: Event-Aware Diffusion Repair
Following the coarse reconstruction stage, the resulting
3DGS exhibits plausible geometry but often suffers from
coarse textures and missing content, limiting overall re-
construction quality, as illustrated in Figure 7. This limita-
tion arises because event cameras primarily capture high-
frequency changes (e.g., edges), leading to a lack of fine-
grained appearance details and failing to reconstruct low-
frequency regions (e.g., homogeneous surfaces such as
white walls). To overcome these limitations, we introduce a
refinement stage that incorporates a diffusion prior, building
on the demonstrated effectiveness of diffusion models in re-
cent generative methods (Poole et al. 2023; Tang et al. 2023;
Liu, Zhou, and Huang 2024). Although diffusion models
can generate semantically meaningful frames, they always
introduce stochasticity in the generative objectives and fail
to adapt to the event-based scenarios. This randomness and
poor generalization can hinder the 3DGS from maintaining
the integrity of event data, as fine-grained optimization be-
comes challenging under conflicting objectives. To address
these issues, we propose fine-tuning an event-aware diffu-
sion repair model and integrating it within a cyclical recon-
struction–repair framework, enabling the 3DGS model to it-
eratively refine both geometry and appearance while main-
taining consistency with event data.
Intensity Difference for 3D Reconstruction. To fine-
tune the diffusion model for event-based scenarios, paired
data comprising event-driven artifact-prone videos and
corresponding high-quality videos is required. For the
high-quality videos, we leverage the large-scale DL3DV
dataset (Ling et al. 2024), which provides diverse, high-
quality RGB video content, to serve as the supervision for
fine-tuning our diffusion model. To generate the artifact-
prone videos, we reconstruct 3DGS from event data and ren-
der videos along the same camera trajectories as those in
the high-quality dataset. However, the DL3DV dataset does
not include event data, and converting RGB videos to event
streams using modern v2e models (Hu, Liu, and Delbruck
2021) is computationally prohibitive at this scale. To address
this limitation, we introduce an intensity-difference super-
vision strategy that guides 3DGS reconstruction to emulate
an event camera, inherently capturing brightness changes.
This approach enables efficient generation of event-driven
artifact-prone video for model adaptation.

Specifically, given two adjacent video frames {It, It+∆t},
we compute a dense per-pixel difference map ∆I =
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Figure 3: The illustration of our training process of the
event-aware video diffusion model.

|It+∆t − It|. During training, we render two frames from
the 3DGS at corresponding adjacent timestamps and super-
vise the rendered difference ∆Î against ∆I using an L1 loss:
L1 = ||∆Î − ∆I||1. After intensity difference reconstruc-
tion, we render videos along identical camera trajectories
as the input sequences, forming paired event-driven artifact-
prone and high-quality videos for diffusion model training.
After being trained on these synthetic paired videos, the dif-
fusion model demonstrates strong generalization in repair-
ing event-aware artifacts while maintaining computational
efficiency by leveraging a large-scale video dataset without
requiring computationally expensive v2e conversion. De-
tailed qualitative results are provided in the Appendix.
Fine-Tuning Event-Aware Diffusion Models. We build
our event-aware video repair model upon the foundation of
pretrained video diffusion i.e., DynamiCrafter (Xing et al.
2024), and adapt it for event-driven artifact repair. Given the
paired data from intensity difference reconstruction, we train
the diffusion model to repair artifact-prone rendered videos
Vrendered and generate high-quality videos Vgt that match
ground truth captures. The ground truth RGB video Vgt is
encoded into latent space z0 := E(Vgt), to which we add
noise at timestep t to obtain zt.

To guide the generation process with event-aware in-
formation, we introduce two complementary conditioning
signals c. First, the rendered artifact-prone video Vrendered
is encoded and concatenated with the noised latent zt to
enable sequence-level conditioning. This design leverages
the visual information from the rendered videos to pro-
vide detailed spatial cues while preserving temporal con-
sistency across frames. Additionally, we incorporate global
scene features by extracting CLIP embeddings from ran-
domly sampled accumulated event frames. These features
offer high-level semantic conditioning, capturing structural
information derived from event data to guide the generative
process toward semantically coherent reconstructions. The
video denoising network ϵθ is optimized using:

Ldiffusion = Et,ϵ

[
∥ϵ− ϵθ(zt, cevent, crendered, t)∥22

]
, (4)
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Figure 4: Qualitative comparison of novel view synthesis on Ev-DL3DV dataset

where cevent represents CLIP features extracted from accu-
mulated event frames, crendered denotes the encoded event-
driven artifact-prone video condition, and the optimization
objective aims to reconstruct the original noise ϵ.
Cyclical Reconstruction-Repair. Once the event-aware dif-
fusion model is trained, we employ a cyclical optimization
pipeline that alternates between 3DGS reconstruction and
diffusion-based repair. This iterative process progressively
refines both geometry and appearance while ensuring con-
sistency with event-derived constraints.

In each cycle, we first render video sequences from the
current 3DGS along camera trajectories sampled based on
event camera poses. These rendered videos are then pro-
cessed by our event-aware diffusion model, producing re-
paired versions with enhanced semantic content and reduced
artifacts. The repaired videos serve as direct supervision tar-
gets for further optimizing the 3DGS using a standard RGB
reconstruction loss. We update the 3DGS through multi-
ple gradient steps, jointly leveraging the repaired-video re-
construction loss and the coarse event-based loss from the
first stage. Formally, given artifact-prone rendered video se-
quences Vrendered from the current 3DGS, we repair them
through the event-aware diffusion model to obtain enhanced
video frames Vrepaired. The repaired frames serve as RGB
supervision targets for 3DGS optimization. We formulate a
reconstruction loss between newly rendered frames from up-
dated 3DGS parameters Vnew and the repaired frames:

Lrepair = ∥Vnew −Vrepaired∥1+λlpipsLLPIPS(Vnew,Vrepaired),
(5)

where LLPIPS is the perceptual loss ensuring semantic con-
sistency, and λlpips = 0.2 balances pixel-level and percep-
tual losses. The final objective in the second stage combines

event-based constraints with repair supervision:

Lfine = Levent + λdLdepth + λrepairLrepair, (6)

where λrepair = 0.5 is the balancing weight.
Subsequently, artifact-prone videos are re-rendered from

the updated 3DGS, and the process is repeated. This cyclical
procedure continues until convergence, enabling the model
to iteratively refine scene geometry and appearance by in-
tegrating diffusion priors with event-driven geometric con-
straints for high-fidelity reconstruction.

Experiments
Datasets. We evaluate our approach on two benchmark
datasets to demonstrate effectiveness across both syn-
thetic and real-world scenarios: the synthetic Ev-DL3DV
dataset (Ling et al. 2024) and the real-world TUM-VIE
dataset (Klenk et al. 2021). For the synthetic dataset con-
struction, we select 24 diverse scenes from the DL3DV-
Benchmark, encompassing both indoor and outdoor envi-
ronments under various illumination conditions, which are
not included in the DL3DV training dataset. Event streams
are synthesized using the v2e simulator (Hu, Liu, and Del-
bruck 2021) with Bayesian filtering to emulate realistic col-
orful event data. The TUM-VIE dataset comprises real-
world recordings captured using a Prophesee Gen4 event
sensor, with RGB views provided by an externally calibrated
camera for reference. Camera extrinsics are tracked at a 120
Hz frequency. Following the evaluation protocol established
by E-3DGS (Han et al. 2024), we utilize the mocap-1d-trans
and mocap-desk2 sequences for comparative analysis.
Evaluation Metrics. We employ a comprehensive set of
metrics to quantitatively assess reconstruction quality. For
standard image quality assessment, we utilize three widely-
adopted metrics: PSNR, SSIM, and LPIPS (Zhang et al.



Metrics E2VID+3DGS Event3DGS
(Xiong et al. 2025)

Elite-EvGS
(Zhang, Chen, and Wang 2025)

E-3DGS
(Han et al. 2024) EvDiff3D (Ours)

PSNR↑ 13.76 16.82 13.63 14.27 18.86
SSIM↑ 0.5534 0.7481 0.5481 0.7805 0.7841
LPIPS↓ 0.7691 0.3584 0.6221 0.5162 0.3243

MUSIQ↑ 19.17 55.11 21.494 39.13 59.80
BRISQUE↓ 75.413 67.67 66.67 74.55 57.20

NIQE↓ 10.72 9.14 8.97 8.44 5.84

Table 1: Quantitative comparison on the synthetic dataset of Ev-DL3DV. The best results are highlighted in bold, and the
second-best is highlighted in underline.

Methods PSNR↑ SSIM↑ LPIPS↓ MUSIQ↑ BRISQUE↓
mocap-1d-trans

Event3DGS 8.16 0.3978 0.4414 33.45 88.87
E-3DGS 7.65 0.4385 0.5374 42.69 86.28
EvDiff3D (Ours) 12.06 0.6258 0.4072 45.02 82.78
mocap-desk2

Event3DGS 10.90 0.5673 0.3801 37.43 85.97
E-3DGS 11.72 0.5853 0.4833 35.91 86.59
EvDiff3D (Ours) 13.47 0.6105 0.3465 38.04 82.75

Table 2: Quantitative comparison on two sequences of the
real-world dataset TUM-VIE (Klenk et al. 2021). The best
results are highlighted in bold, and the second-best is high-
lighted in underline.

2018). Given that our method introduces enhanced seman-
tic content in event-based reconstruction, we additionally
incorporate no-reference image quality assessment metrics:
MUSIQ (Ke et al. 2021), BRISQUE (Mittal, Moorthy, and
Bovik 2012), and NIQE (Mittal, Soundararajan, and Bovik
2013). These metrics provide complementary evaluation of
perceptual quality without requiring reference images.

Synthetic Results
Table 1 and Figure 4 present quantitative and qualitative
comparisons on the synthetic Ev-DL3DV dataset, respec-
tively. As shown in Table 1, our EvDiff3D method demon-
strates superior performance across all evaluation metrics,
achieving state-of-the-art results in event-based 3D recon-
struction. Compared to the advanced baseline Event3DGS,
EvDiff3D achieves substantial improvements: a 2.04 dB
(12.1%) gain in PSNR and a notable 0.034 (9.5%) reduction
in LPIPS. The no-reference quality metrics further validate
our approach’s effectiveness in enhancing semantic content.
Figure 4 showcases the qualitative superiority of our method
across diverse synthetic scenes. Prior event-only baselines
struggle with texture recovery and semantic detail preserva-
tion due to the inherent sparsity of event data. For instance,
Event3DGS produces blurry reconstructions with prominent
artifacts and missing regions (e.g., the floor), underscoring
the limitations of relying solely on high-frequency informa-
tion from event streams. In contrast, EvDiff3D achieves re-
constructions with significantly sharper textures and fewer
artifacts. Our approach effectively captures fine-grained de-
tails such as surface patterns, material properties, and com-
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Figure 5: Qualitative comparison on the real-world TUM-
VIE (Klenk et al. 2021) datasets.

plex geometric structures that are poorly represented or en-
tirely absent in baseline methods, demonstrating its capabil-
ity to overcome the challenges of event-only 3D reconstruc-
tion.

Real-World Results
Table 2 and Figure 5 present the quantitative and qualita-
tive results on the real-world TUM-VIE dataset (Klenk et al.
2021). Notably, we optimized the 3DGS model using an
event camera with a resolution of 1280× 720, while evalua-
tion was conducted using a calibrated camera with a resolu-
tion of 1024×1024. This discrepancy in resolution and field
of view often leads to pronounced artifacts in prior methods
that lack diffusion repair, such as black margins outside the
event camera’s field of view, which severely impact eval-
uation metrics. Leveraging our cyclical reconstruction and
repair pipeline, EvDiff3D effectively eliminates these arti-
facts and fills the margins with plausible structure, produc-
ing high-quality results. The quantitative comparison in Ta-
ble 2 demonstrates that EvDiff3D significantly outperforms
existing methods across all metrics. Figure 5 further illus-
trates the qualitative improvements achieved by EvDiff3D.
Unlike previous methods, which struggle with artifacts and
incomplete reconstructions, our framework successfully re-
stores missing details and enhances texture fidelity, demon-
strating its effectiveness in real-world scenarios.

Ablation Study
Impact of Event-Based Depth Loss. To assess the impact
of the event-based depth loss, we compare our method with



Ablation PSNR↑ SSIM↑ LPIPS↓ MUSIQ↑ BRISQUE↓
3DGS Baseline 16.78 0.7468 0.3596 54.76 62.02
+ Depth Loss 17.92 0.7768 0.3311 56.25 58.37
+ Diffusion Repair 18.86 0.7841 0.3243 59.80 57.20

Table 3: Ablation study on the impact of different compo-
nents in our framework. All the results are evaluated on the
Ev-DL3DV dataset.
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Figure 6: Ablation study on the event-based depth loss.

a baseline that does not incorporate the depth loss over the
optimization pipeline by setting λd = 0. Table 3 (2nd row)
shows the quantitative results, where the event-based depth
loss achieves a 1.14 dB (6.8%) improvement in PSNR com-
pared to the baseline (1st row). Figure 6 demonstrates the
superiority of the depth loss in preserving structural fidelity.
Impact of Diffusion Repair. As shown in Table 3, incorpo-
rating diffusion prior (3nd row) achieves a 0.94 dB (5.2%)
improvement in PSNR compared to the baseline without dif-
fusion repair (2nd row), which demonstrates the effective-
ness of the diffusion prior to enhance semantic content and
reduce artifacts. Qualitative results in Figure 7 also show that
our method can effectively repair texture details. Addition-
ally, we ablate the impact of conditioning on the event CLIP
feature and observe a 0.11 PSNR drop when it is removed.

Analysis Study
Sensitivity Study of Parameter λrepair. We provide further
analysis of the parameter λrepair, which balances the recon-
struction loss and the diffusion repair loss. As shown in Fig-
ure 8 (a), the performance of our method is relatively stable
when λrepair is set between 0.5 to 2.0, with the best perfor-
mance achieved at λrepair = 0.5. When λrepair is too large, the
diffusion prior dominates the optimization, leading to over-
smoothing and loss of structural details.
Reconstruction from Sparse Event Views. We further ana-
lyze the impact of the number of event views on reconstruc-
tion quality. To this end, we conduct an analysis study by
reducing the number of event views and analyzing the im-
pact on the reconstruction quality. We gradually reduce the
number of event views to ratios of 1/1.5, 1/2, and 1/4 of the
original event data. As shown in Figure 8 (b), our method
maintains reasonable reconstruction quality even with 1/2
of the original event data, achieving a PSNR of 18.27 dB.
However, as the number of event views decreases further,
the reconstruction quality deteriorates.
Training Time and Rendering Speed. We further ana-
lyze the computational complexity of our two-stage frame-
work in comparison to existing methods. Table 4 reports the
training time and FPS. Due to the inclusion of the diffu-

Event3DGS E-3DGS EvDiff3D (Ours)

Training Time 15 min 50min 40 min
Inference (FPS) 250 250 250

Table 4: Computational Complexity Analysis. All the results
are evaluated on a single A40 GPU.

Ours w/o 
Diffusion Repair

Ours with 
Diffusion Repair GT

Figure 7: Ablation study on the repair loss.
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Figure 8: Ablation study on the (a) λrepair and (b) ratio of
event view. These two analysis studies were conducted on a
single sequence in the Ev-DL3DV dataset.

sion repair process, our method incurs longer training times
than Event3DGS, while maintaining comparable inference
speeds. E-3DGS also exhibits increased training time, pri-
marily attributed to its additional pose optimization step.

Conclusion

We have presented EvDiff3D, a novel two-stage frame-
work for high-fidelity 3D scene reconstruction using only
event data. Our approach introduces a cyclical optimization
pipeline that progressively refines both geometry and ap-
pearance by jointly leveraging event-based geometric con-
straints and a specialized event-aware diffusion prior. Exten-
sive experiments demonstrate that EvDiff3D achieves sub-
stantial improvements over existing event-based methods.
These results highlight the effectiveness of incorporating
diffusion models for enhancing semantic content and re-
pairing event-driven artifacts, underscoring the potential of
event-only 3D reconstruction without reliance on images.
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