
EUROGRAPHICS 2024/ P. Charalambous and R. Hu Short Paper

An Inverse Procedural Modeling Pipeline
for Stylized Brush Stroke Rendering

Hao Li∗ , Zhongyue Guan∗ , Zeyu Wang

The Hong Kong University of Science and Technology (Guangzhou), China

Abstract
Stylized brush strokes are crucial for digital artists to create drawings that express a desired artistic style. To obtain the
ideal brush, artists need to spend much time manually tuning parameters and creating customized brushes, which hinders
the completion, redrawing, or modification of digital drawings. This paper proposes an inverse procedural modeling pipeline
for predicting brush parameters and rendering stylized strokes given a single sample drawing. Our pipeline involves patch
segmentation as a preprocessing step, parameter prediction based on deep learning, and brush generation using a procedural
rendering engine. Our method enhances the overall experience of digital drawing recreation by empowering artists with more
intuitive control and consistent brush effects.

CCS Concepts
• Computing methodologies → Image-based rendering; Machine learning; • Applied computing → Media arts;

1. Introduction

Recent advances in digital technologies have enabled artists to use
a set of digital tools for artistic creation. In particular, stylized
brush strokes play a pivotal role in creating digital drawings that
express certain artistic effects [LBDF13, SLF22]. However, most
of these methods focused on example-based or patch-based render-
ing that can barely support real-time rendering such that the out-
put brushes cannot be easily used by the artists. In practice, stamp-
based brushes are dominant in common paint software, which this
work particularly focuses on. Professional artists often customize
these brushes by tuning parameters in the brush engine to enhance
their style and finetune their artwork. The creation and selection of
brushes represent a crucial step for digital art creators in the draw-
ing process.

A common challenge faced by artists is to create stylized brushes
that match the existing brush styles in other drawings. Despite their
ability to mimic suitable brush effects by studying existing art-
works, artists frequently encounter difficulties because they often
only have a few reference images about the ideal brush and find
it difficult to locate corresponding brush resources that can be di-
rectly used for drawing. It is also cumbersome to create a desired
brush, as this step is time-consuming and requires expertise to iden-
tify, summarize, and adjust brush parameters [Her98]. For novice
painters, this situation becomes more challenging, inhibiting them
from employing digital drawing techniques.

*Equal contribution.

In this paper, we proposed a new pipeline that can automatically
predict the parameters of stamp brushes and reconstruct the digital
brushes involved in a single stylized line drawing. Given a sketch,
we developed a segmentation algorithm to identify the different
brush styles as patches. Then we designed a convolutional neural
network to predict the parameter sets from those patch images. We
trained our network with our large-scale generated dataset of stroke
patches and their registered parameters. With the predicted param-
eter set, we are able to reconstruct the stamp brush using the open-
source paint software Ciallo [CW23]. This simplifies the process
for artists to collect suitable brushes, assisting them in inheriting
the original painting style and brushstrokes, making it more conve-
nient and effective.

In summary, our paper makes the following contributions:

• A stroke segmentation method to identify different styles of
strokes and generate corresponding patches for parameter pre-
diction.

• A dataset of more than 50K individual stylized stroke patches
with registered brush parameters.

• A convolutional neural network that can predict stamp brush pa-
rameters to match the style in a given stroke patch image.

2. Methodology

Our core workflow is shown in Figure 1. We explain the segmen-
tation algorithm in Section 2.1, the parameterized stroke dataset in
Section 2.2, and the prediction model in Section 2.3.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/egs.20241024 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0009-0009-0564-9937
https://orcid.org/0009-0006-8250-6823
https://orcid.org/0000-0001-5374-6330
https://doi.org/10.2312/egs.20241024


2 of 4 H. Li, Z. Guan & Z. Wang / An Inverse Procedural Modeling Pipelinefor Stylized Brush Stroke Rendering

0.0064 0.44 0.51 0.16

0.0063 0.26 0.53 0.13

0.0084 0.48 0.38 0.16

Vectorize

Segment

Pretrain

(stroke patch 𝑷, parameters 𝝋)

Stamp Thickness
Noise
Factor

Rotation
Randomness

Interval Rendered Brush

𝑷𝟏

𝑷𝟐

𝑷n

𝝋𝟏

𝝋𝟐

𝝋𝒏

… … ……

Figure 1: Our proposed pipeline. Given a reference drawing, we perform stroke segmentation to obtain stroke patches. Then we train a
convolutional neural network to predict stroke parameters, with which we can generate similar brush strokes.

2.1. Stroke-based Patch Segmentation

Current brushstroke segmentation methods, such as DStroke pro-
posed by Fu et al. [FYY∗21], tackle with paintings with densely
overlapped strokes. Different from their focus, we particularly con-
sider sketchy line drawings where sparse and long strokes are used
to explicitly depict shape and texture.

Initially, we used the Canny algorithm [Can86] for recogniz-
ing edges in sketches, and then applied dilation and Gaussian blur
to smooth the brush edges, but it was less effective for denser
sketches. The illustration can be found in supplementary material.

Observing that brush effects are rendered following drawing tra-
jectory in common paint software, we considered the stroke path
as critical information for stroke segmentation of line drawings.
We prioritized obtaining path information from the user input side,
leveraging the data provided by existing sketch dataset [GSH∗19,
WQF∗21, XSL∗22]. And we also tried to vectorize sketches using
raster-to-vector technique [Sel03].

Given the stroke path information, a bounding box can be ex-
tracted for each individual stroke, from which the overlaps among
all brush strokes in the drawing can be further calculated. We se-
lected regions with less stroke overlap to favor single stroke with
explicit brush features. These identified regions are considered ef-
fective for assisting in brush feature extraction and recognition that
are subsequently cut from the original digital artwork.

Through the previous process, single segmented patch may still
include more than one brush effects. Therefore, we designed a
brush segmentation algorithm that analyzes all pixels in the patch,
further segmenting the region based on pixel gradient variations.
Algorithm 1 summarizes the steps of this approach. Finally, we
cropped each segmented patch at the ratio of 1:1 and then normal-
ized each of them to be (224, 224) resolution to fit in the network
input.

2.2. Stroke Patch Dataset

We collected the stroke patch dataset by rendering diverse stamp-
based brushes on given vector paths. We generated 6,677 sets of
parameters ϕ = (stamp image, interval, thickness, rotation random-
ness, noise factor), which are the basic set of properties to define a
stamp-based brush in common paint software such as Photoshop.
For the stamp image, we collected 107 public ones with various

Algorithm 1 Stroke Segmentation
1: image← Input image matrix
2: threshold← Pixel value threshold that triggers segmentation
3: height,width← dimensions of image
4: regionSet← empty list to store strokes
5: function DFS(x, y)
6: oriColor← image[y,x]
7: Add [y,x] to the last list in regionSet
8: Initialize stack with adjacent pixels of (x,y)
9: while stack is not empty do

10: (curX ,curY )← pop an element from stack
11: curColor← image[curY,curX ]
12: if abs(curColor - oriColor)< threshold then
13: Update oriColor
14: Add [curY,curX ] to the last list in regionSet
15: Update stack with adjacent pixels of (curX ,curY )
16: end if
17: end while
18: end function
19: for each pixel (x,y) in image do
20: if pixel (x,y) is not visited and not black then
21: Add new list to regionSet
22: DFS(x, y)
23: end if
24: end for
25: return regionSet

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



H. Li, Z. Guan & Z. Wang / An Inverse Procedural Modeling Pipelinefor Stylized Brush Stroke Rendering 3 of 4

brush effects from an online platform [PNG23]. We selected 8 vec-
tor paths with simple line topology and distinct curvature since we
also favor single stroke without overlapping in the segmentation al-
gorithm. Each vector path is defined as a polyline L = (xi,yi)

n
i=0.

Given each set of parameters, we rendered the brushes on given
vector paths using the open-source paint software Ciallo [CW23],
resulting in RGBA images at (224, 224) resolution. We converted
them to RGB images to align with the segmented patch from styl-
ized line drawings. Therefore, we generated 6,677× 8 = 53,416
pairs of (stroke patch P, parameters ϕ) as our training data.

2.3. Brush Prediction

We formulated the prediction of stamp images as a classification
problem and the prediction of other parameters as linear regres-
sion problems. We tried several convolutional neural network ar-
chitectures and settled on the best-performing one that follows the
ResNet-18 architecture. We changed the fully connected layer to
have 111 outputs that contains predicted probabilities for each of
the 107 stamp images and predicted values for interval, thickness,
noise factor, and rotation randomness. The architecture details can
be found in the supplementary material.

Data Pre-processing. We augmented the dataset by randomly
rotating the patch image in order to enhance the variety of collected
stroke patches. In addition, we applied min-max normalization to
the brush parameters to equal the contribution of each parameter to
the model.

Training. We used 64:16:20 for the train-validation-test split.
Each patch is treated as a separate training instance. We use six
terms in our loss function, which is formulated as follows:

L= λsLs +λiLi +λnLn +λrLr +λtLt

The hyperparameters are set to the default value 1. The detailed
explanation of the loss terms can be found in the supplementary
material.

We trained the network from scratch using the Adam optimizer
with learning rate set to 10−4 and batch size 64 on an NVIDIA
GeForce RTX 4090 GPU. It takes about 5 hours on average to con-
verge in our experiments.

Figure 2: Patch segmentation results. Given an existing drawing
and its vectorization information, our algorithm can extract the
bounding boxes of strokes and then process the segmented patches
to only keep one primary stroke style in each.

3. Results

In this section, we demonstrate some experimental results of patch
segmentation and brush parameter prediction.

Patch Segmentation. Figure 2 shows the patch segmentation re-
sults. Given an existing drawing and its vector path, our algorithm
first extracts the bounding boxes of strokes. Then we process it to
keep only one primary stroke style in each patch. As shown in the
figure, the patterns of strokes that can be obviously observed are
well captured in the segmented patches. After further processing,
the individual patch is capable of expressing the captured feature
of one specific brush.

Brush Prediction. We report our evaluation results on the test
set in Table 1. Our model can make decent predictions with an ac-
curacy of 90.17% for stamp image, and quite low mean square er-
rors for interval, thickness, noise factor, and rotation randomness.

Table 1: Prediction accuracy and errors.

Stamp Image (%) Thickness (10−4) Interval (10−4)
90.17 0.45 1.86

Noise Factor (10−4) Rotation Randomness (10−4)
5.85 12.35

To evaluate the performance of our entire pipeline, we present
the brush reconstruction results from stylized drawings in Figure 3.
Our method can restore a similar brush effect in terms of overall
appearance by segmenting stroke patches from the whole drawing
and predicting individual brush parameters with our trained model.

4. Limitations and Future Work

There are several limitations of our proposed approach. We only
considered the strokes with fixed width while omitting the influence
of pen pressure. One potential direction is to infer thickness offset
and the mapping between pen pressure and stroke thickness based
on a group of strokes with varying widths. Moreover, the brush
reconstruction in this study is currently restricted to reproducing
stamp brushes with a bald parameter set. To improve practicality, it
is crucial to predict complex brushes with diverse shapes, textures,
and even dynamic simulation parameters within a single stroke. We
will explore the potential of developing an end-to-end differentiable
pipeline by considering the intended brush as a function. Achieving
this goal requires a systematic consolidation of artist experiences
and traditional brush effects.

5. Conclusion

In this paper, we address the challenge of acquiring user-intended
brushes in the creative process and optimizing artists’ drawing ex-
perience by presenting a novel pipeline for intelligent stroke extrac-
tion, parameter prediction, and stamp brush generation. Our work
has the potential to be seamlessly integrated into common paint
software.

We incorporated a segmentation algorithm and neural network
for inverse procedural modeling of stylized brush strokes to en-
hance and streamline the basic drawing tools commonly used by

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



4 of 4 H. Li, Z. Guan & Z. Wang / An Inverse Procedural Modeling Pipelinefor Stylized Brush Stroke Rendering

Input Image Segmented
Patch

Predicted Parameter List

Thickness
Noise
Factor

Rotation
Randomness Interval

0.0092 0.13 0.75 0.26

0.0083 0.08 0.46 0.24

0.0114 0.00 0.38 0.38

0.0060 0.10 0.39 0.20

0.0090 0.28 1.02 0.09

0.0130 0.08 0.72 0.41

Stamp

Brush
Reconstruction

0.0072 0.28 0.99 0.05

0.0053 0.19 1.06 0.46

0.0137 0.24 0.01 0.08

Figure 3: Brush reconstruction results from stylized drawings. The majority of brushes generated from the predicted parameters can resemble
the input patches. In the last row, we found an unexpected result and concluded it as the potential gap between the segmentation algorithm
and the prediction model. Despite the stroke color of ivory, our model tried to mimic the gray boundary observed in the patch, which is
actually caused by the stroke filtering in the segmentation algorithm.

artists. By providing a single stylized line drawing as a reference,
the user can obtain usable stamp brushes that replicate the ef-
fects seen in the reference image using our pipeline. The generated
brushes can still be further tuned by adjusting individual parameters
as the user wants. We validated this novel workflow for intelligent
brush generation with diverse digital line drawings.

We believe this work tackles some challenges in brush-based
digital art creation and can inspire future intelligent drawing sys-
tems.

References
[Can86] CANNY J.: A Computational Approach to Edge Detection. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 6 (1986),
679–698. 2

[CW23] CIAO S., WEI L.-Y.: Ciallo: The Next-Generation Vector Paint
Program. In ACM SIGGRAPH 2023 Talks. 2023, pp. 1–2. 1, 3

[FYY∗21] FU Y., YU H., YEH C.-K., LEE T.-Y., ZHANG J. J.: Fast
Accurate and Automatic Brushstroke Extraction. ACM Transactions on
Multimedia Computing, Communications, and Applications (TOMM) 17,
2 (2021), 1–24. 2

[GSH∗19] GRYADITSKAYA Y., SYPESTEYN M., HOFTIJZER J. W.,
PONT S., DURAND F., BOUSSEAU A.: OpenSketch: A Richly-
Annotated Dataset of Product Design Sketches. ACM Trans. Graph.
38, 6 (nov 2019). URL: https://doi.org/10.1145/3355089.
3356533, doi:10.1145/3355089.3356533. 2

[Her98] HERTZMANN A.: Painterly Rendering with Curved Brush

Strokes of Multiple Sizes. In Proceedings of the 25th Annual Con-
ference on Computer Graphics and Interactive Techniques (New York,
NY, USA, 1998), SIGGRAPH ’98, Association for Computing Machin-
ery, p. 453–460. URL: https://doi.org/10.1145/280814.
280951, doi:10.1145/280814.280951. 1

[LBDF13] LU J., BARNES C., DIVERDI S., FINKELSTEIN A.: Real-
brush: Painting with Examples of Physical Media. ACM Transactions on
Graphics (TOG) 32, 4 (2013), 1–12. 1

[PNG23] PNGEGG: Free Transparent PNG Images. https://www.
pngegg.com/, 2023. Accessed on: December 30, 2023. 3

[Sel03] SELINGER P.: Potrace: A Polygon-Based Tracing Algorithm,
2003. 2

[SLF22] SHUGRINA M., LI C.-Y., FIDLER S.: Neural Brushstroke En-
gine: Learning a Latent Style Space of Interactive Drawing Tools. ACM
Transactions on Graphics (TOG) 41, 6 (2022), 1–18. 1

[WQF∗21] WANG Z., QIU S., FENG N., RUSHMEIER H., MCMILLAN
L., DORSEY J.: Tracing Versus Freehand for Evaluating Computer-
generated Drawings. ACM Transactions on Graphics (TOG) 40, 4
(2021), 1–12. 2

[XSL∗22] XIAO C., SU W., LIAO J., LIAN Z., SONG Y.-Z., FU H.:
DifferSketching: How Differently Do People Sketch 3D Objects? ACM
Trans. Graph. 41, 6 (nov 2022). URL: https://doi.org/10.
1145/3550454.3555493. 2

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://doi.org/10.1145/3355089.3356533
https://doi.org/10.1145/3355089.3356533
https://doi.org/10.1145/3355089.3356533
https://doi.org/10.1145/280814.280951
https://doi.org/10.1145/280814.280951
https://doi.org/10.1145/280814.280951
https://www.pngegg.com/
https://www.pngegg.com/
https://doi.org/10.1145/3550454.3555493
https://doi.org/10.1145/3550454.3555493

